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ABSTRACT
Objective  Ageing is accompanied by deterioration 
of multiple bodily functions and inflammation, which 
collectively contribute to frailty. We and others have 
shown that frailty co-varies with alterations in the gut 
microbiota in a manner accelerated by consumption 
of a restricted diversity diet. The Mediterranean diet 
(MedDiet) is associated with health. In the NU-
AGE project, we investigated if a 1-year MedDiet 
intervention could alter the gut microbiota and reduce 
frailty.
Design  We profiled the gut microbiota in 612 non-frail 
or pre-frail subjects across five European countries 
(UK, France, Netherlands, Italy and Poland) before and 
after the administration of a 12-month long MedDiet 
intervention tailored to elderly subjects (NU-AGE diet).
Results  Adherence to the diet was associated with 
specific microbiome alterations. Taxa enriched by 
adherence to the diet were positively associated with 
several markers of lower frailty and improved cognitive 
function, and negatively associated with inflammatory 
markers including C-reactive protein and interleukin-17. 
Analysis of the inferred microbial metabolite profiles 
indicated that the diet-modulated microbiome change 
was associated with an increase in short/branch chained 
fatty acid production and lower production of secondary 
bile acids, p-cresols, ethanol and carbon dioxide. 
Microbiome ecosystem network analysis showed that the 
bacterial taxa that responded positively to the MedDiet 
intervention occupy keystone interaction positions, 
whereas frailty-associated taxa are peripheral in the 
networks.
Conclusion  Collectively, our findings support the 
feasibility of improving the habitual diet to modulate 
the gut microbiota which in turn has the potential to 
promote healthier ageing.

Significance of this study

What is already known about this subject?
►► Ageing is associated with deterioration of 
multiple bodily functions and inflammation, 
leading to the onset of frailty.

►► The onset of frailty is associated with changes 
in the gut microbiota that are linked with a 
restricted diversity diet.

►► The Mediterranean dietary regime is positively 
associated with health.

What are the new findings?
►► Adherence to the Mediterranean diet led to 
increased abundance of specific taxa that were 
positively associated with several markers of 
lower frailty and improved cognitive function, 
and negatively associated with inflammatory 
markers including C-reactive protein and 
interleukin-17.

►► These associations were independent of host 
factors such as age and body mass index.

►► Inferred microbial metabolite profiling indicated 
that the diet-modulated microbiome change 
was associated with an increase in short/
branch chained fatty acid production and lower 
production of secondary bile acids, p-cresols, 
ethanol and carbon dioxide.

►► Microbiome ecosystem network analysis 
showed that the bacterial taxa enriched due 
to the MedDiet intervention occupy keystone 
interaction positions, whereas frailty-associated 
taxa are peripheral in the networks.
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Significance of this study

How might it impact on clinical practice in the foreseeable 
future?

►► Our findings support the feasibility of changing the habitual 
diet to modulate the gut microbiota which in turn has the 
potential to promote healthier ageing.

►► Our findings also provide a short list of candidate taxa that 
can be investigated further as live biotherapeutic agents for 
direct administration to older subjects to reduce the onset of 
frailty.

Introduction
Frailty that accompanies ageing involves failure of multiple 
physiological systems1 and a persistent activation of the innate 
immune inflammatory response.2 Frailty may include the 
development of chronic low-grade inflammation (ie, inflamm-
ageing),3 loss of cognitive function,4 sarcopenia5 and the devel-
opment of chronic diseases like diabetes and atherosclerosis.3 
Modification of dietary patterns such as adopting a Mediterra-
nean diet (MedDiet) has been suggested as a major therapeutic 
strategy to address frailty.6 The MedDiet regimen is character-
ised by increased consumption of vegetables, legumes, fruits, 
nuts, olive oil and fish and low consumption of red meat and 
dairy products and saturated fats.7 Adherence to a MedDiet is 
associated with reduced mortality, increased antioxidant activity, 
reduced incidences of several diseases, as well as reduced inflam-
mation.8 Several studies have shown that increased adherence to 
the MedDiet is linked to reduced frailty.9 Beyond the negative 
association with disease, higher level adherence to the MedDiet 
has been associated with beneficial changes in gut microbiome 
composition, with reduction in proteobacterial abundance 
accompanied by increased levels of short chain fatty acid 
production.10 11 On a global basis, the majority of elderly people 
do not consume a MedDiet and, in fact, a major challenge in 
elderly healthcare is the consumption of a restricted diet which 
is associated with a low-diversity gut microbiome, especially in 
subjects in long-term residential care.12 13 In previous work we 
have used fine detail bioinformatic (bi-clustering) analysis to 
identify specific microbial taxa that are lost in incremental stages 
in the transition from high-diversity microbiome healthy subjects 
to low-diversity frail subjects.14 In a recently completed 6-month 
dietary intervention in which elderly individuals were supple-
mented with up to 20 g daily of five prebiotics, multiple gut 
microbial taxa responded to the prebiotic supplementation,15 
but there was no change in overall microbiota alpha diversity 
and trends towards a reduction of inflammatory markers did 
not reach overall statistical significance. We thus reasoned that a 
more dramatic dietary intervention was required.

The NU-AGE dietary intervention project aimed to study the 
effect of the administration of a customised MedDiet for 12 
months in a large cohort of more than 1200 elderly individuals 
aged 65–79 years,16 distributed across five different countries 
(Poland, Netherlands, UK, France and Italy). Baseline and post-
intervention results from this study have reported gender- and 
country-specific differences for measured metabolite levels as 
well as body composition data. A significant association was 
observed between increased adherence to the NU-AGE MedDiet 
and enhanced global cognitive ability and episodic memory.17 
Moreover, higher adherence has been shown to reduce the rate 
of bone loss in individuals with osteoporosis18 and to improve 
innate immune function,19 blood pressure and arterial stiffness.20 

In the current study we have profiled the effect of the NU-AGE 
MedDiet on the gut microbial community of a subset of partic-
ipants from the NU-AGE trial comprising 612 individuals (289 
controls (145 men and 144 women) and 323 with the NU-AGE 
MedDiet (141 men and 182 women)). A variety of beneficial 
outcomes were correlated to microbiome alterations.

Methods
Study participants and dietary intervention
The NU-AGE study is a 1-year, randomised, multicentre, 
single-blind, controlled trial (registered with ​clinicaltrials.​gov, 
NCT01754012). Details on the recruitment of participants and 
the dietary intervention and the collection of metadata corre-
sponding to anthropometry, frailty and cognitive response have 
been previously described.17 21 Online supplementary table 
1 provides descriptive statistics of participants by country for 
whom paired microbiome profiles at baseline and the final time 
point were available.

Measurement of inflammatory and adiposity related 
hormones
Methods for the measurements of inflammatory markers have 
been previously described.22 Online supplementary text 1 briefly 
summarises the techniques used for this purpose.

DNA extraction and 16S rRNA gene sequencing
Microbial DNA was extracted from stool samples using the 
repeated bead beating method as previously described,23 with 
some modifications.24 The detailed protocol adopted for the 
DNA and 16S rRNA gene sequencing is described in online 
supplementary text 2.

Bioinformatic and biostatistical analysis
Online supplementary text 3 provides a complete description 
of the methodology used for the bioinformatics and the multi-
variate statistical analysis of the amplicon sequence data. This 
includes preprocessing of sequenced reads,25 identification of 
and removal of chimaeras,26 27 taxonomic classification of Oper-
ational Taxonomic Units (OTUs),28 29 machine learning-based 
identification of microbiome taxa associated with the dietary 
intervention30 (described in online supplementary figure 1), 
identification of taxonomic modules using the iterative Binary 
Bi-clustering of Gene-sets (iBBiG) approach,31 association anal-
ysis of dietary adherence and diet-associated taxonomic markers 
with the various components of diet as well as with the markers 
of frailty and inflammation, computation of MedDiet-associated 
microbiome indices (described pictorially in online supplemen-
tary figure 2) and the association analysis of these indices with 
dietary components, inflammation and frailty, obtaining inferred 
metabolite profiles based on per-sample species abundances 
and previously curated mappings of experimentally validated 
species-to-metabolite links32 33 and generation and visualisa-
tion of co-occurrence networks and computation of centrality 
measures (see online supplementary text 3).30 34

Results
Diet and microbiome profiles co-vary and differ between 
countries at baseline
Overall, there were 612 individuals (across the control and 
intervention cohorts) for whom paired microbiome data were 
collected at both the baseline and 1 year (referred to as ‘final’) 
time points. While the age ranges of the individuals in the control 
and intervention cohorts across countries were similar, there was 
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Figure 1  Baseline habitual diet and microbiota composition separate and co-vary by country, and the dietary intervention altered macronutrient 
profiles. Principal component analysis (PCoA) plots of (A) baseline dietary profiles and (B) baseline 16S microbiome profiles across the five different 
countries. For both, the PERMANOVA p values showing the significance of the association with the countries are also indicated. For the association 
between the dietary frequencies, the microbiome profiles, R2 and the significance values obtained using the Procrustes analysis are also shown. The 
results indicate that there are country-specific patterns in dietary habits which are also reflected in the microbiome profiles. (C) PCoA plots showing 
the distinct variations in the dietary patterns in the intervention and control cohorts. The PERMANOVA p values of these differences are also indicated. 
This reflects the effect of the dietary intervention to detect the specific dietary components driving these effects. Associations were computed between 
the intake frequencies of the components and the two PCoA axes (PCoA1 and PCoA2). These associations are plotted in (D). While the intervention 
group is primarily driven by an increase in consumption of fibres, vitamins (C, B6, B9, thiamine) and minerals (Cu, K, Fe, Mn, Mg), the changes in 
controls are associated with an increase in fats consumption.

a marginally higher representation of women in the interven-
tion cohort (Fisher's test p<0.12; online supplementary table 
1). Principal coordinate analysis (PCoA) indicated significant 
dietary differences at baseline between the countries showing 
three distinct subgroups (figure 1A) (PERMANOVA p<0.001: 
R2=0.33): the first containing Italian subjects; the second 
containing UK and French subjects; and the third containing 
those from the Netherlands and Poland. This specific pattern 
of clustering was also observed at the level of PCoA (based on 
Spearman distances) using the 16S rDNA OTU profiles at base-
line (figure 1B) (significant: PERMANOVA p<0.001; although 
with considerable overlaps: R2=0.036). While the Italian 
subjects had a distinct microbiome composition, those from 
UK/France and Poland/Netherlands were more like each other. 
Procrustes analysis of the food consumption and the OTU abun-
dance profiles confirmed a significant association between diet 
and microbiome composition (figure 1A,B; online supplemen-
tary figure 3; Procrustes RV coefficient 0.23; p<0.001). Specific 
microbiome components drove country-specific separations at 
baseline (Mann–Whitney test FDR-corrected p<0.15; online 
supplementary figure 4A–B). As expected, the dietary varia-
tions within the intervention group were significantly different 
from the control group (envfit p<0.006) (figure  1C). These 
changes in the intervention group were primarily driven by an 
increase in the intake of fibres, vitamins (C, B6, B9, thiamine) 
and minerals (Cu, K, Fe, Mn, Mg), while changes in the controls 
were associated with an increase in fat intake (saturated fats and 

mono-unsaturated fatty acids) relative to the MedDiet interven-
tion group (figure 1D).

Increasing adherence to the NU-AGE MedDiet influences 
specific components of the gut microbiome previously 
associated with health
There were no significant changes in the global gut microbiota 
diversity in the subjects from individual countries in the inter-
vention and control groups (online supplementary figure 5). 
However, we observed that, across the study, increasing adher-
ence to the diet was associated with an attenuated loss of micro-
biome diversity (table  1). For a finer detailed microbiota–diet 
association analysis, we used adherence scores to the MedDiet, 
previously calculated based on the NU-AGE Food Based Dietary 
Guidelines (FBDG).35 These are recommendations that act 
as the basis for facilitating or measuring adherence to healthy 
eating initiatives or dietary interventions for improving public 
health. The NU-AGE FBDG covered 15 dietary goals including 
a vitamin D supplement that has been described in detail by 
Berendsen et al.35 We created Random Forest (RF) models to 
predict dietary adherence from microbiome profiles at both the 
baseline and final (1-year) time points. For both models, the 
correlations observed between the predicted food score (using 
the Random Forest model) and the actual food score were signif-
icant (baseline: R=0.27; p<1.2e-11; final: R=0.30; p<2.2e-14) 
(online supplementary figure 6A,B), indicating that there was 
a clear association between the microbiome and adherence to 
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Table 1  High adherence to a MedDiet attenuates the loss of diversity of the gut microbiome

Low adherence Medium adherence High adherence

Estimate
Standard 
error Z value P value Estimate

Standard 
error Z value P value Estimate

Standard 
error Z value P value

Intercept 387.11 113.53 3.41 0.00065*** 283.04 117.05 2.42 0.016* 412.97 97.48 4.24 2.3e-5**

Time point −9.51 4.85 −1.96 0.049* −9.34 4.99 −1.87 0.061(.) −3.84 4.93 −0.78 0.44

Gender -2 12.34 −0.16 0.87 16.97 12.62 1.34 0.179 −7.40 10.93 −0.68 0.5

Age −0.19 1.57 −0.12 0.90 1.21 1.64 0.74 0.46 −0.54 1.37 −0.39 0.69

A significant decline in diversity was observed across the time points in the low adherence group (as indicated in the estimate value).
Data tabulated are from regression analysis of the change in gut microbial diversity across the time points (baseline vs final), taking age and gender as the confounders in the 
three adherence change groups.
The decline attenuated from being marginally significant in the medium adherence group to non-significant in the high adherence group. Please refer to the Methods section for 
the definition of ‘low’, ‘medium’ and ‘high’ adherence groups of individuals.
The notations used for the p-values of significance are **P < 0.01; *P < 0.05 and; ***P < 0.10

Figure 2  Identification of diet responsive taxa by machine learning. (A) Correlation between the actual and predicted diet scores obtained 
using the random Forest approach. (B) Ranked feature importance scores of the top marker Operational Taxonomic Units (OTUs) responding 
positively and negatively to diet, along with their taxonomic affiliations (see Methods section for the selection of the top markers significantly 
associated with the food score). Top markers having a significant positive or negative association with diet scores were tagged as ‘DietPositive’ 
and ‘DietNegative’, respectively. The two groups show distinct taxonomic classifications. While DietPositive markers have an over-representation 
of species like Faecalibacterium prausnitzii, Eubacterium and Roseburia, DietNegative markers are characterised by the presence of Ruminococcus 
torques, Collinsella aerofaciens, Coprococcus comes, Dorea formicigenerans, Clostridium ramosum. The associations of the different groups with the 
adherence scores are also reflected in the changes across the time points between the intervention and control cohorts (as shown in C). (C) Boxplot 
showing the log-fold change in the gain/loss ratios of the various taxa (ie, the number of individuals in which a given OTU is increased divided by the 
number of individuals in which it is decreased across the time points) in the intervention cohorts compared with non-intervention in the two groups. 
While the DietPositive OTUs had a relatively positive increase in the intervention cohort (compared with the non-intervention group), changes in 
the DietNegative indicated a significant decrease with the intervention. (D) Boxplots showing the variation in the across time point changes in the 
DietPositive and the DietNegative OTUs in groups of individuals obtained after dividing them into three tertile groups (low, medium and high) based 
on increasing positive changes in adherence to the NU-AGE diet. The p values of the significance of the association are indicated as ****p<0.0001, 
***p<0.001, **p<0.01 and *p<0.05.

the MedDiet. For either time point, an optimal set of 75 OTUs 
provided the highest predictive performance (a total number 
of 129 OTUs combining both; see online supplementary figure 
6C,D) to identify the microbiome response to the MedDiet. We 

refer to these as 'diet-responsive' OTUs/taxa/markers throughout 
this study. Overall, using this optimal set of OTUs, the correla-
tion between the predicted and the observed adherence score 
was 0.39 (p<2.2 e-16) (figure 2A). The list of the top predictive 
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OTUs along with their taxonomic classification (obtained using 
SPINGO28) is provided in online supplementary table 2.

A total of 44 top predictive OTUs had a positive association 
with adherence scores (enriched with increasing adherence to 
diet) and 45 had a negative association (depleted with MedDiet 
adherence) (see Methods section). We refer to these as ‘Diet-
Positive’ and ‘DietNegative’ OTUs, respectively. A subset of 
these OTUs (with defined taxonomic classifications) along with 
their absolute feature importance scores is shown in figure 2B. 
The sets of taxa comprising these two groups are distinct. The 
DietPositive OTUs were mainly assigned to Faecalibacterium 
prausnitzii, along with Roseburia (R. hominis), Eubacterium (E. 
rectale, E. eligens, E. xylanophilum), Bacteroides thetaiotaomi-
cron, Prevotella copri and Anaerostipes hadrus. A majority of 
these taxa have previously reported positive health associations 
including production of short chain fatty acids (SCFAs) and anti-
inflammatory properties as well as negative associations with 
diseases like type 2 diabetes and colorectal cancer.36–38 F. praus-
nitzii had also been negatively associated with frailty onset in the 
elderly.39 In contrast, the DietNegative OTUs mainly belonged 
to Ruminococcus torques, Collinsella aerofaciens, Coprococcus 
comes, Dorea formicigenerans, Clostridium ramosum, Veillonella 
dispar, Flavonifractor plautii and Actinomyces lingnae. Increase 
in the abundances of R. torques, C. aerofaciens, C. ramosum and 
V. dispar have been associated with type 2 diabetes and colorectal 
cancer, atherosclerosis, cirrhosis and inflammatory bowel 
disease.38 40–43 These findings collectively suggest that adherence 
to the MedDiet has the potential to modulate the microbiome in 
a direction positively associated with health.

Notably, in spite of country-specific microbiome composi-
tion differences at baseline (figure  1B; online supplementary 
figure 4A,B) and different dietary adherences (online supple-
mentary figure 7A) (as also reported by previous studies on 
this cohort),35 44 the diet-responsive taxa identified across the 
entire cohort were largely shared across the different nationali-
ties—that is, their association with diet was not specific for any 
country (see online supplementary text 4; online supplementary 
figure 4A,B; online supplementary figure 7). Their associations 
with MedDiet adherence were further validated by their pattern 
of abundance variation in both the intervention and control 
cohorts, as well as in individuals ranked by increasing adherence 
to the diet (see online supplementary text 5; online supplemen-
tary figure 8, figure 2C,D).

Next we investigated the co-occurring modules within the gut 
microbiomes. These modules are analogous to ‘guilds’ within the 
microbiomes that have similar or associated functional proper-
ties. We used iBBiG to identify modules in the gut microbiome,31 
an approach we previously used to identify granular differ-
ences in the microbiome as a function of healthy ageing in the 
ELDERMET cohort14 (see online supplementary text 3; online 
supplementary figure 9; online supplementary tables 3 and 4). 
iBBiG identified six overlapping taxonomic modules (named 
A to F) within the NU-AGE dataset. Notably, we identified a 
specific module C which was significantly over-abundant in indi-
viduals with increased frailty and also increased in representa-
tion in the set of DietNegative OTUs (see online supplementary 
text 6; online supplementary figure 9C,D). This indicates that 
module C is similar to the long-stay-like modules we identified 
in ELDERMET individuals.14 However, the specific enrichment 
of module C in the set of OTUs depleted with MedDiet adher-
ence indicated the likelihood that the MedDiet successfully 
modulated the gut microbiome in a manner negatively associated 
with frailty.

Adherence to the NU-AGE MedDiet intervention modulated 
the microbiome in a manner negatively associated with 
frailty and inflammation
A major objective of the NU-AGE dietary intervention was 
reduction of frailty and inflamm-ageing. The study subjects were 
categorised into Non-Frail (or apparently healthy), Pre-Frail and 
Frail groups based on Fried scores.21 While the DietNegative 
taxa showed a stepwise significant decrease with the three frailty 
groupings (ie, Frail>Pre-Frail>Non-Frail), DietPositive taxa 
showed a significantly higher abundance in healthy (Non-Frail) 
individuals compared with Frail individuals (see online supple-
mentary figure 10A). The DietPositive taxa showed a signifi-
cantly positive change in individuals with reduced frailty (see 
online supplementary text 7; online supplementary figure 10B). 
During the intervention period, within the control cohort there 
was a marginally significant increase in the proportion of indi-
viduals with increased frailty (compared with the intervention 
group) (Fisher's test p<0.06; online supplementary figure 10C). 
However, we could not observe a direct association between 
dietary adherence scores and frailty (online supplementary 
figure 10D). We hypothesised that the effect of dietary adher-
ence on frailty could be indirect, whereby increasing adherence 
to a Mediterranean diet could modulate the microbiome (poten-
tially with some non-responders), and that this microbiome 
response could have a direct association with an attenuation of, 
or reduced risk of, frailty and improvements in other measures 
of well-being.

To investigate this, we computed the associations between 
the diet-responsive OTU markers and specific indices of frailty, 
cognitive function and inflammation across the entire study 
cohort (see online supplementary table 5 for list of metadata 
tested). The objective was to test if diet-responsive taxa showed 
significantly different trends of association with these indices 
(see online supplementary figure 11). Overall, although the 
absolute values of the associations were relatively weak, we 
observed significant differences in the association patterns of 
DietPositive and DietNegative OTUs for five different cyto-
kines/biomarkers (namely, pro-inflammatory high-sensitivity 
C reactive protein (hsCRP) and interleukin 17 (IL-17), anti-
inflammatory sGP130 as well as adiponectin and leptin); three 
frailty-associated measures (Fried Score, Hand Grip Strength 
and Gait Speed Time); BabCock Memory Score and Construc-
tional Praxis (both associated with cognitive function). The most 
notable observation, however, was the pattern of these associ-
ations. The DietPositive OTU markers had consistent negative 
associations (significantly lower than the DietNegative markers) 
with the inflammatory markers hsCRP and IL-17 levels as well as 
with Fried Scores and Gait Speed Time (both measures associated 
with increased frailty) (figure 3A). In contrast, their associations 
were consistently positive with measures of improved cognitive 
function (eg, Constructional Praxis, BabCock Memory Score), 
reduced frailty (Hand Grip Strength) and two of the cytokines 
(adiponectin and sGP130) (a trend exactly opposite to that for 
DietNegative OTU markers). While the role of adiponectin as 
an anti-inflammatory marker is well documented,45 sGP130 is a 
negative regulator of the pro-inflammatory trans IL-6 signalling 
pathway.46 Notably, in spite of the country-specific variations in 
dietary intake, microbiome scores and adherence scores, each 
of these associations (with the exception of BabCock Memory 
Scores) could be replicated (both in terms of direction as well 
as the significance of the associations) in at least three of the 
countries (six of the 10 associations replicated in four of the 
five countries) (figure  3B). These results clearly indicate that 
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Figure 3  Consistent association of diet responsive taxa with different measures of frailty, cognitive function and inflammation. (A) Heatmap 
showing the variation of the association patterns (obtained using Spearman rhos) of the adherence associated marker Operational Taxonomic Units 
(OTUs) (arranged from top to bottom in increasing order of their correlations with the adherence scores) with the selected measures of frailty, 
cognitive function and the pro/anti-inflammatory cytokine levels. For each cell, colours indicate the Spearman rho values (as shown). **Significant 
association with FDR-corrected p value <0.15. *Marginal association with nominal p value <0.05. The DietPositive and DietNegative OTUs are also 
demarcated. Specific differences could be observed between the association pattern of the different measures and the DietPositive and DietNegative 
OTUs. For certain measures such as high-sensitivity C reactive protein (hsCRP) levels, interleukin 17 (IL-17) levels and gait speed time, DietPositive 
OTUs were observed to have significantly more negative correlations as compared to DietNegative OTUs. For the other measures associated with 
reduced frailty and improved cognitive function, as well as adiponectin and sGP130 levels, an exact opposite trend was observed. (B) Heat plot 
showing the replication of these trends individually within each of the country-specific cohorts. Brown indicates those cases where the correlations of 
the DietPositive OTUs were significantly more negative than the DietNegative group, green indicates those cases with the opposite trend and yellow 
indicates those cases of no significant change.

adherence to the NU-AGE MedDiet is associated with modu-
lation of the microbiome in a manner that is relatively consis-
tent (across the countries) and is in turn associated with reduced 
frailty, improved cognitive function and reduced inflammation.

Microbiome response, accompanied by specific beneficial 
changes in the gut metabolic profiles, is the key intermediate 
between dietary adherence and health
Based on the preceding findings, it seemed likely that a micro-
biome associated with dietary adherence was more important for 
improved health status than merely adherence to the diet itself. 
Testing this hypothesis required the computation of measurable 
‘microbiome scores/indices’ (analogous to the dietary adherence 
scores) that would take into account the variations associated with 
individual marker OTUs. Switching to the NU-AGE MedDiet is 
characterised by changes in the consumption pattern of specific 
dietary components—namely, an increase in the consumption 
of fibres (vegetables, fruits), carbohydrates (wholegrains), plant 
proteins (legumes), polyunsaturated fatty acids (fish) and vita-
mins such as vitamin C (fruits) and a concomitant decrease in 
the consumption of fats, alcohol, sodium and sugar (sweets).35 

We first validated the diet-responsive OTUs (identified based 
on their association with the overall NU-AGE FBDG scores) by 
checking their associations with the consumption patterns with 
the different food components (partial Spearman correlations 
taking into account age, body mass index, gender, country and 
polypharmacy as confounders). We observed that OTU markers 
with an increasing positive association with FBDG adher-
ence scores showed increasing positive correlations with fibre, 
vitamin C, vitamin D, plant proteins and carbohydrates and 
increasing negative associations with the components alcohol, 
fats and sugar whose consumption was decreased during the 
MedDiet change35 (see online supplementary figure 12). Thus, 
the above results indicate that the associations of the marker 
OTUs were not only with the overall FBDG scores, but also 
with individual dietary components whose modulations were 
associated with the NU-AGE MedDiet intervention (even after 
taking into account all host-associated confounding factors like 
age, body mass index, gender, country and polypharmacy). This 
validated the association of the dietary markers with the dietary 
intervention. Further, each of the diet-responsive OTUs had a 
specific degree of correlation with the dietary adherence scores 
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Figure 4  MedDiet microbiome index correlates with reduced frailty, improved cognitive function and reduced inflammation, independent of the 
adherence scores. Violin plot showing the association (partial Spearman correlations) of the different measures of frailty, cognitive function and 
inflammatory marker levels with the MedDiet-modulated microbiome index after taking into account the adherence scores as a confounder. The x 
axis shows the Spearman rho values and the y axis indicates the −log (base 10) of the p values. Most negatively associated measures are expected 
to be at the extreme left of the plot, the most positively associated measures are expected to be at the extreme right of the plot. Points are coloured 
based on the significance of the obtained associations (red indicates associations with FDR-corrected p<0.1, orange indicates associations with 
FDR-corrected p<0.2). The MedDiet microbiome index is observed to be associated with several measures associated with reduced frailty, reduced 
inflammation and improved cognitive function and this association is independent of the adherence scores.

and specific trends of association with the dietary components 
(see online supplementary figure 12). Based on the overall 
correlations of the diet-associated marker OTUs with the adher-
ence scores as well as the abundances marker OTUs in a given 
sample, we calculated a sample-specific diet-modulated micro-
biome index (see Methods section; online supplementary figure 
2). As expected, the microbiome index was positively correlated 
with the overall adherence scores and also captured the overall 
association patterns of the individual marker OTUs (ie, positive 
associations with fibre, carbohydrate, plant proteins, vitamin C, 
polyunsaturated fatty acids and negative associations with fats, 
alcohol and sugar), indicating its validity as a proxy for the taxo-
nomic markers associated with consumption of the MedDiet (see 
online supplementary figures 12,13; online supplementary text 
8).

We then checked the association of this index with the 
different measures of frailty, cognitive function and inflamma-
tion (across the entire cohort), considering the adherence scores 
as a confounder. Ten of the 11 associations with measures of 
improved cognition, reduced frailty and inflammation could be 
reproduced. We also observed additional negative associations 
with the inflammation-related cytokines interleukin (IL)-2 and 
macrophage inflammatory protein (MIP)-1b, and positive asso-
ciations with verbal fluency (figure 4). These results show that 
the diet-modulated microbiome components are associated with 
frailty, inflammation and cognitive function independent of the 
adherence scores (ie, these are not indirect consequences of 
associations with dietary adherence). We had previously shown 
that these associations were stable across the different countries 
(figure  3B). We next checked the effect of confounders (such 
as age, body mass index, gender, disease pathophysiologies and 
medication intake) on the extent of diet–taxon associations. Indi-
viduals with multiple diseases, specifically those with diabetes, 
heart attack and inflammatory disorders, were observed to have 
significantly lower microbiome scores compared with non-
diseased controls (lower but marginally significant for cancer) 
(see online supplementary figure 14A–E; online supplementary 
text 9; online supplementary table 6). However, the pattern 
of association of the microbiome index with seven of the 10 
inflammatory markers and frailty indices (identified in figure 4) 

largely remained invariant, even after taking into account all 
confounders including age, body mass index, gender, polyphar-
macy and different disease pathophysiologies (see online supple-
mentary text 9; online supplementary figure 15).

Even with respect to the across time point changes, while 
change in dietary adherence scores were significantly associated 
with change in the microbiome index, it was the change in the 
microbiome index that was positively associated with improve-
ment in cognitive function, physical well-being and negatively 
associated with inflammatory markers like hsCRP (see online 
supplementary text 10; online supplementary figure 16). Positive 
changes in microbiome indices were also associated with positive 
changes in the levels of the anti-inflammatory cytokine IL-10 
and negative changes in the ratio of hsCRP to anti-inflammatory 
cytokine levels, further indicating the negative association of the 
diet-associated microbiome index with inflammatory cytokine 
levels (see online supplementary figure 16C and online supple-
mentary text 10).

The positive influence of the diet-modulated microbiome 
change on health status is likely to be driven by specific microbial 
metabolites. Given that faecal metabolomic data were unavail-
able for the individuals, we predicted the functional metabolic 
profiles of the gut microbiome using the corresponding 16S 
species composition profiles (see Methods section). Correlating 
the across time point changes in the abundances of these 
predicted metabolic profiles with the microbiome index change 
identified dramatic differences across the microbiome response 
landscape (see online supplementary figure 17). A positive 
microbiome change was associated with an increase in the micro-
bial consumption of fibre-associated non-starch polysaccharides 
(probably indicative of Mediterranean diet change). In contrast, 
a negative change was associated with an increase in microbial 
simple sugar consumption. A negative microbiome response 
was also accompanied by a predicted increase in the microbial 
consumption of tauro- and glyco- derivatives of bile acids (such 
as taurocholate or glycochenodeoxycholate) to secondary bile 
acids (lithocholate, deoxycholate) through cholate and cheno-
deoxycholate (see online supplementary figure 18A). Bile acid 
dysregulation is associated with different disease conditions,47 
specifically the increase in production of lithocholic and 
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deoxycholic acid has been associated with colorectal cancer.48 
In contrast, increased production of both branched chain fatty 
acids (BCFAs) and SCFAs are associated with a positive micro-
biome response. A positive association of SCFAs with host health 
is well recognised.49 Previous studies measuring the metabolomic 
changes associated with intake of a MedDiet have also observed 
a similar increase in SCFA levels,10 50 as well as an exactly similar 
link wherein MedDiet-like dietary modulations (increased fibre 
intake and decreased fat intake) were observed to be positively 
associated with faecal SCFA levels and negatively associated with 
faecal secondary bile acids.51 52 Furthermore, in the current study 
we had data for the measured plasma levels of cholic acid (CA), 
glycochenodeoxycholic acid (GDCDA) and chenodeoxycholic 
acid (CDCA) for a subset of individuals belonging to the Italian 
and Polish cohorts. For GCDCA and CDCA, correlating the 
plasma levels of these bile acids with the abundances of the diet-
associated markers revealed trends that the DietPositive OTUs 
had significantly more positive associations with GCDCA levels 
and more negative associations with CDCA levels compared 
with DietNegative OTUs (online supplementary figure 18B). 
By grouping this subset of individuals into three terciles based 
on their GDCDA/CDCA ratios, we observed that individuals 
with an increasing GCDCA/CDCA ratio were associated with a 
significantly positive change in their diet-associated microbiome 
index (online supplementary figure 18C). These results confirm 
the predicted metabolite profiles wherein individuals with 
increasing diet-associated microbiome indices were predicted 
to have decreased microbial conversion of GDCDA to CDCA 
(and thereafter to lithocholic acid (LCA) and deoxycholic acid 
(DCA)), thereby resulting in higher GDCDA/CDCA levels. Thus, 
some of the key global changes (in bile acid and SCFA levels) we 
detect and that we predicted to be linked with diet-associated 
microbiome response have been reported in the literature across 
multiple studies as well as the plasma level analysis. The only 
conflicting trend was with CA levels which were observed to 
show the pattern opposite to that expected. However, it could be 
because the measurements were on serum samples (in contrast to 
faecal levels) and CA/CDCA are produced by both the liver and 
the microbiota (see online supplementary figure 18C).

A negative microbiome response was also associated with other 
detrimental metabolites like p-cresol, ethanol and carbon dioxide, 
whose relative overproduction is associated with onset of colorectal 
cancer, insulin resistance, non-alcoholic fatty liver disease, cyto-
toxicity and small intestinal bacterial overgrowth.53–57 Notably, at 
baseline the diet-associated microbiome index was observed to be 
negatively associated with multiple diseases including hyperten-
sion, diabetes and cancer (online supplementary figure 14). Thus, 
although inferred rather than measured, the data indicate that 
metabolic change associated with a positive microbiome response 
beneficially impacts host health.

DietPositive OTUs are keystone species in the gut microbial 
community
Finally, we evaluated the role of the diet-responsive taxa in 
the overall microbiome community structure, represented 
by networks defined by the Reboot Approach (see Methods 
section).30 A co-occurrence network provides a representation 
of nodes and edges (interconnecting lines) between these nodes, 
wherein the nodes represent the taxa (in this case, the OTUs) 
and the edges between the nodes represent a significant co-oc-
currence relationship between them (across a provided set of 
observations or samples). The placement of the taxa within a 
co-occurrence network indicates the relative importance of the 

taxa in the stability of the community. We first obtained the 
co-occurrence network for all the samples across time points 
for both cohorts. The major component of the co-occurrence 
network is a conglomeration of clusters of taxa, with other taxa 
acting as interlinking hubs. However, the positioning of the 
majority of DietPositive and DietNegative taxa was strikingly 
different. The DietPositive taxa were either located centrally at 
the hubs of the network or as linking nodes within the major 
subnodes (figure 5A). This shows the centrality of these taxa in 
the gut community structure, a phenomenon termed 'keystone 
species'.58 In contrast, the majority of the DietNegative taxa were 
placed at the periphery of the network. We probed this obser-
vation by computing two centrality measures for each taxon in 
the network: 'degree centrality', which is the number of nodes 
connected to a given node, and 'betweenness centrality', which is 
the number of paths connecting any two nodes that pass through 
a given node. DietPositive taxa had a significantly higher degree 
of betweenness centrality compared with the DietNegative taxa 
or the non-associated markers (figure 5B,C). We regenerated the 
network within each of the different countries as well as across 
overlapping windows of samples of increasing dietary adherence 
(see online supplementary figure 19; online supplementary figure 
20; online supplementary figure 21A). Despite major differences 
in the overall structure of the individual networks, the placement 
patterns of the taxa as well as their relative importance within 
the gut microbial networks were invariant irrespective of the 
country. The DietPositive taxa had significantly higher centrality 
measures irrespective of the nationality and the dietary adher-
ence of the individuals. As expected, there were also distinct 
patterns of interactions for the DietPositive and DietNegative 
groups of taxa, specifically with respect to the iBBiG identified 
frailty-associated module C, which had negative co-occurrence 
propensities with the DietPositive group (figure  5D). Interest-
ingly, the strength of the co-occurrence propensities became 
significantly more negative with increasing adherence to the diet 
(figure 5E). This was not observed for any of the other taxo-
nomic modules (see online supplementary figure 21B).

Discussion
The current results provide a systemic view of the effect of 
consuming the NU-AGE MedDiet on the microbiome and subse-
quently on biomarkers of health in the elderly. A significant chal-
lenge for the current study was the high level of microbiome 
variability across individuals in five countries, resulting in a 
low signal-to-noise ratio which translated to weaker taxonomic 
signals for association with metadata. Analysis using traditional 
methodologies are useful and provide statistical rigour, even if 
the assumption of independent variables is not a true reflection 
of the community structure in the microbiota. However, due to 
the multitude and disparate nature of the microbiota structure 
configurations across individuals, combined with the relatively 
small effect of diet over a year of life in an established gut micro-
biota community as well as other aspects such as the subjec-
tive nature of the dietary measurements that is expected for 
community-dwelling individuals and the assumption that dietary 
measurements accurately measure the actual dietary change, the 
traditional statistical methodologies are unable to identify the 
taxa associated with the statistically significantly lower loss of 
diversity associated with adherence to the MedDiet. To establish 
the diet-responsive taxa and generate a diet-associated micro-
biome index, we applied a novel leave-one-out-cross-validation 
machine-learning methodology to predict the adherence score 
for each individual with good accuracy and used these predictive 
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Figure 5  Bacterial taxa that respond positively to Mediterranean diet intervention occupy keystone interaction nodes for peripheral frailty-
associated taxa in microbiome networks. (A) Representation of the Operational Taxonomic Unit (OTU) co-occurrence network obtained for all the 
samples across the time points and cohorts with the DietPositive, DietNegative and non-correlated OTUs shown in green, red and grey colours, 
respectively. The network shows two distinct characteristics of the DietPositive and DietNegative markers (or OTUs). While the DietNegative markers 
(barring a few exceptions) are observed to occur as the peripheral nodes in the network, the DietPositive markers mostly act as either the centrally 
connected hub nodes or as interconnecting nodes between the hubs, indicating their centrality to the microbiome. This is also reflected in the 
comparison of the degree and betweenness centrality measures shown as boxplots in (B) and (C), respectively. (D) Relative co-occurrence propensity 
(calculated as the logged ratio of the number of positive edges to the number of negative edges) between the DietPositive and DietNegative OTUs 
with those belonging to the different iterative Binary Bi-clustering of Gene-sets (iBBiG) modules. It was observed that, specifically for the frailty-
associated longstay-like module C, while the DietNegative markers showed a positive co-occurrence, the DietPositive markers showed a negative 
association, further indicating that taxa that respond positively to the diet negatively associate with those that are associated with frailty. (E) The 
negative association was further investigated by building networks for the five overlapping windows of samples W1–W5 (see Methods section), with 
increasing adherence to the diet. Relative co-occurrence propensity between the DietPositive and the module C across networks obtained for the 
overlapping windows of samples with increasing adherence to the diet. With increasing adherence to the diet, the relative co-occurrence propensity 
between the DietPositive OTUs and those belonging to the module C becomes increasingly negative. The p values of the significance of association 
are indicated as ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05.

models to probe and identify the specific taxonomic signals that 
best predict increased adherence to the MedDiet.

We observed that increased adherence to the MedDiet 
modulates specific components of the gut microbiota that 
were associated with a reduction in risk of frailty, improved 
cognitive function and reduced inflammatory status. For 
reasons described above, these associations for some of the 
diet-modulated microbiome markers could only be observed 
at relatively weaker thresholds (rho <−0.09 and rho >0.07, 
FDR-corrected p values <0.2). This allowed for the visual-
isation and re-examination of the most predictive OTUs. 
However, the striking observation was the consistency of 
associations of the diet-modulated microbiome markers with 
biological markers of ageing (independent of nationality). The 
formulation and calculation of a single sample-specific micro-
biome index clarified these associations even further. For a 
single sample, this index provided a quantitative summary of 
the abundance patterns of the diet-responsive markers (the 
higher the value, the higher the abundance of DietPositive 
taxa and vice versa), thereby addressing the sample-specific 
variability associated with the individual markers. We showed 

that they were not only associated with dietary compliance 
but were consistently associated with frailty and inflammatory 
markers, thereby confirming their importance for health main-
tenance independent of other anthropometric confounders 
like age, body mass index and gender. In fact, the apparent 
lack of a direct link of the adherence score with frailty further 
hints that the response of an individual to the diet could be 
mediated by the change in the microbiome. Besides these 
associations, the keystone nature of the DietPositive markers 
within the gut microbiome remains remarkably stable across 
multiple nationalities. These keystone properties of the Diet-
Positive markers add support to the so-called Anna Karenina 
principle59 of microbiomes which posits that microbiomes of 
healthy individuals are similar and the unhealthy individuals 
are each aberrant in their own way. By protecting the ‘core’ 
of the gut microbial community, adherence to the diet could 
facilitate the retention of a stable community state in the 
microbiome, providing resilience and protecting from changes 
to alternative states that are found in unhealthy subjects.

The positive impact of these microbial taxa on host health 
was further indicated by predictive metabolite profiling, where 
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increasing adherence to the diet specifically selects for taxa 
that are enriched in the production of SCFAs/BCFAs, while 
selecting against those associated with bile acid dysregula-
tion and production of proposed deleterious metabolites like 
acetone, p-cresol, ethanol and carbon dioxide. Although this 
is an in-silico prediction, an increase of SCFA production 
with MedDiet consumption (or with specific components of 
the MedDiet) has been previously shown.10 50–52 The study by 
Pagliai et al, which compared the microbiome and metabo-
lome changes on MedDiet and vegetarian diets, reported a 
significant positive association of carbohydrate consump-
tion (which is increased in the MedDiet) with faecal levels 
of SCFA butyrate and a significant negative association of 
lipid and fat intake (decreased in the MedDiet) with levels 
of the SCFAs propionate and acetate. Negative associations 
of the SCFAs were also observed with levels of the inflam-
matory cytokine IL-17.50 Although the study by Pagliai et al 
observed no significant differences in the levels of BCFAs on 
the MedDiet (in contrast to the in-silico predictive metabolite 
analysis performed in our current study), a negative associ-
ation of the BCFA levels with fat intake was also observed 
(in line with our current findings). The links between the 
MedDiet-associated microbiome modulation, SCFA produc-
tion and the carcinogenic secondary bile acid production are 
precisely in line with findings from two previous studies on 
African Americans and rural Africans.51 52 Interestingly, across 
the secondary bile acid production landscape, while the faecal 
metabolome results from the study by O’Keefe et al confirmed 
the predicted metabolite changes with respect to CA and the 
carcinogenic secondary bile acids DCA and LCA, the plasma 
metabolite levels (in the current study) confirm the predicted 
changes with respect to CDCA and GCDCA (although plasma 
metabolite levels are not expected to exactly reflect the faecal 
metabolome). Thus, results obtained from these studies largely 
complement each other and resonate with our current find-
ings, and the predicted downregulation of the other poten-
tially detrimental metabolite production provides an informed 
list of candidate compounds that can be further verified by 
targeted metabolomic profiling in future studies.

The interplay of diet, microbiome and host health is a complex 
phenomenon influenced by several factors. It is also probably a 
multistep process dictated by specific mechanistic rules. While 
the results of this study shed light on some of the rules of this 
three-way interplay, several factors such as age, body mass index, 
disease status and initial dietary patterns may play a key role in 
determining the extent of success of these interactions. Interest-
ingly, the beneficial effects of MedDiet intervention mediated 
through the microbiome are not restricted to elderly subjects, as 
evidenced by the study by Meslier et al60 (this volume; co-sub-
mitted to Gut for back-to-back publication) showing that a similar 
intervention in obese subjects resulted in multiple health-related 
shifts in the gut microbiome and metabolome independently of 
energy intake. Notwithstanding this theoretical and practical 
reinforcement, the strategy of promoting health in the elderly 
by maintaining a long-term MedDiet (or supplementation of 
specific ingredients) may be impractically expensive or logisti-
cally impossible in many countries where these ingredients are 
neither staple nor available year-round. In some older subjects 
with problems like dentition, saliva production, dysphagia or 
irritable bowel syndrome, adapting a MedDiet may not be a 
realistic option. Our definition here of MedDiet-responsive taxa 
that correlate with health, plus our recent identification of taxa 
associated with healthy ageing in a large metacohort of 2500 
subjects,61 provides a short list of candidate taxa for development 

as live biotherapeutic agents for direct administration to older 
subjects to reduce onset of frailty.
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Supplementary Table 1: Numbers and demographics of subjects in control and intervention cohorts  

 

*: Baseline 

 Controls  MedDiet Intervention 

All 

Countries 

Italy UK Netherlands Poland France All 

Countries 

Italy UK Netherlands Poland France 

Individuals 

with 

sequenced 

microbiome 

289 91 16 37 105 40 324 112 32 38 112 39 

Median Age 

(Min-Max) 

71 

(65-79) 

72 

(65-79) 

70.5 

(65-79) 

71.5 

(65-79) 

72 

(65-79) 

68 

(65-77) 

71 

(65-79) 

72 

(65-79) 

70.5 

(65-79) 

71.5 

(65-79) 

72 

(65-79) 

68 

(65-72) 

Gender 

(Male:Female) 

145:144 46:45 7:9 21:16 46:59 25:15 141:182 56:56 12:20 13:25 45:67 15:24 

Median BMI 

(Min-Max) 

26.8 

(18.8-

44.6) 

26.4 

(18.8-

44.6) 

27.20 

(20-

31.5) 

26.7 

(19.7-35.1) 

26.4 

(21-37.6) 

25.05 

(18.9 – 

37.5) 

26.9 

(18.5-46) 

27.15 

(18.7-

37.9) 

25.95 

(18.5-

33.7) 

25 

(20.3-35.8) 

28.1  

(19.5-

46) 

24.3 

(19.7-

31.3) 
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SUPPLEMENTARY TEXT 1 

 

MEASUREMENT OF INFLAMMATORY AND ADIPOSITY RELATED 

HORMONES 

Briefly, fresh blood from each participant was collected after fasting in each recruiting centre. 

Blood was immediately centrifuged at 2000 x g for 10 min at 4°C and separated into plasma 

and serum according to a standardized operating procedure. All the specimens were stored at -

80 until the time of analysis and sent to the project partners responsible for the analyses. A 

magnetic bead-based multiplex immunoassay (Bio-Plex) (BIO-RAD laboratories, Milan, Italy) 

was used to measure the inflammatory and adiposity related markers according to the 

manufacturer’s instructions. In particular, Interleukin (IL) 1beta, 1Ra, 2, 4, 5, 6, 7, 8 10, 12p70, 

13, 17, 17A, 18, Tumor Necrosis Factor alpha (TNFα), Interferon gamma (INFγ), Granulocyte 

Macrophage Colony-Stimulating Factor (GM-CSF), Granulocyte Colony-Stimulating Factor 

(G-CSF), Macrophage inflammatory protein-1beta (MIP1β) and Monocyte Chemotactic 

Protein-1 (MCP-1), were measured in multiplex with Bio-Plex Pro Cytokine, Chemokine, and 

Growth Factor Assays (intra-assay coefficient of variation (CV) was lower than 4.55% for all 

the molecules); Transforming Growth Factor beta1 (TGF-β1 intra-assay CV, 3.83%) with 

Bioplex Pro TGF- beta assay; Ghrelin (inter-assay CV, 2%) and Resistin (inter-assay CV, 4%) 

in multiplex with Bio-Plex Pro human diabetes assay. Plates were read and analyzed by Bio-

Plex Manager Software. The level of Interleukin 6 receptor alpha (IL6rα, inter-assay CV, 

3.1%)), Glycoprotein 130 (gp130, inter-assay CV, 5.9%), Pentraxin-3 (inter-assay CV, 6.8%) 

and soluble TNFalpha receptors R1 (TNF-R1, inter-assay CV, 6.1%) and R2 (TNF-R2, inter-

assay CV, 7.7%) were assessed in multiplex in a subgroup of 360 samples with Bioplex Pro 

human inflammation assay (gp-130, inter-assay %CV 5.9). The quantitative determination of 

hsCRP, leptin, adiponectin has been performed by ProcartaPlexTM Immunoassay 

(eBioscience, Hatfield, UK) according to the manufacturer’s instructions. Analysis was 

performed using Luminex 200 instrumentation (Luminex Corportation, The Netherlands). 

Assay sensitivities were 19.31 pg/mL for Leptin, 4.39 pg/mL for hsCRP, and 47.46 pg/mL for 

adiponectin. 
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SUPPLEMENTARY TEXT 2 

METHODOLOGY OF DNA EXTRACTION AND GENERATION OF 16S rRNA 

AMPLICON READS 

A 250 mg stool sample was incubated with 1 ml lysis buffer (500 mM NaCl, 50 mM tris-HCl, 

pH 8.0, 50 mM EDTA and 4% sodium dodecyl sulphate (SDS)) in a 2-ml screw cap tube with 

0.5 g sterile 0.1 mm zirconia beads and four sterile 3.5 mm glass beads (BioSpec Products, 

Bartlesville, OK). This was homogenised three times for 60 s at maximum speed (Mini-

Beadbeater™, BioSpec Products), with cooling on ice for 60 s between homogenisation cycles. 

Samples were incubated at 95 °C for 15 min to further lyse the cells. Samples were centrifuged 

(16,000g) at 4 °C for 5 min and the supernatant was collected. For increased yield, an additional 

300 μl of RBB lysis buffer was added to the pellet and the RBB steps were repeated as before. 

The supernatants were pooled and incubated with 350 μl of 7.5 M ammonium acetate (Sigma 

Aldrich, …) for 10 min. The protein-free DNA was precipitated with isopropanol at 4 °C and 

centrifuged at 16,000g. The pellet was washed with 70% (v/v) ethanol, allowed to dry, re-

suspended in TE buffer, and treated with 10 mg/ml RNAse A (Thermo Scientific, Ireland). 

Proteinase K treatment and remaining DNA isolation was performed on-column using the 

QIAamp DNA Stool Mini Kit (Qiagen, Hilden, Germany) according to manufacturers’ 

instructions leading to 200 μl of DNA eluted in AE buffer. DNA was visualised on a 0.8% 

agarose gel for quality assessment and quantified using a NanoDrop 2000 system (Thermo 

Scientific). DNA was stored at −20 °C until use.  

16S rRNA gene libraries for the Illumina MiSeq System were prepared manually following the 

manufacturer’s protocol (15031942; Illumina, San Diego, CA, USA), with some modifications. 

V3 and V4 region of 16S rRNA genes were amplified using 15 ng of DNA template, Phusion 

HF Master Mix (Thermo Scientific) and 0.2 μM primers (98 °C 30 s; 25 cycles of 98 °C 10 s, 

55 °C 15 s, 72 °C 20 s; 72 °C 5 min)(60). Amplicons were cleaned up using SPRIselect 

magnetic beads (Beckman Coulter, Indianapolis, IN) and checked for quality on a 1.2% agarose 

gel. Cleaned amplicons (5 μl) were used as template for Index PCR using Phusion HF Master 

Mix and Nextera XT Index Kit v2 Set A and D (Illumina) (98 °C 30 s; 8 cycles of 98 °C 30 s, 

55 °C 30 s, 72 °C 30 s; 72 °C 5 min). Indexed amplicons were cleaned up using SPRIselect 

magnetic beads, run on a 1.2% agarose gel and quantified by Qubit dsDNA HS Assay (Thermo 

Scientific). The samples were pooled in equimolar amounts (40 ng DNA per sample) with up 

to 288 samples per library. Final library sizes were validated using Bioanalyzer DNA 1000 

chips (Agilent Technologies, Santa Clara, CA). Libraries were denatured with 0.2 N NaOH 
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and diluted to 6 pmol/L with a 20% PhiX control before loading onto the MiSeq flow cell. 

Sequencing was performed on an Illumina MiSeq platform using a 2 × 250 bp paired end 

protocol, as per manufacturer’s instructions (Illumina), on multiple sequencing runs. 
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Supplementary Figure 1: Pictorial workflow describing the Random Forest based prediction of adherence scores from the microbiome abundance 

profiles and the identification of adherence score associated markers including the DietPositive and DietNegative markers. 
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Supplementary Figure 2: Pictorial representation of the methodology of computation of the microbiome indices using the leave-one-out strategy. 

 

 

 

 

 

Supplementary material Gut

 doi: 10.1136/gutjnl-2019-319654–11.:10 2020;Gut, et al. Ghosh TS



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 3: Procustes plot showing the relative movement of the samples between the Principal Coordinate Analysis (PCoA) plots 

of the dietary and the microbiome profiles. 
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Supplementary Figure 4: Association of different genera with the specific nationalities shown as a. Plotted based on the weights of their 

association with the Principal Coordinate Analysis (PCoA) axes (as in Fig 1b). b. Plotted as heatmap showing the nationality-specific median 

abundances. Only those genera that are significantly over-abundant in at least one nationality as compared to the rest (Mann-Whitney tests using 

FDR corrected p-value < 0.15). Principal Component Analysis plots showing the changes in the microbiome profiles of subjects belonging to the 

various nationalities in c. control d. intervention cohorts. The p-values (obtained using envfit) of the association between the country and change 

of the microbiome in both the control and intervention cohorts are also indicated.  
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Supplementary Figure 5: Shannon diversity indices of the microbiota at baseline and Final time points for subjects in the intervention and control 

cohorts in the five different countries. 
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Supplementary Figure 6: Relationship between the Random Forest predicted and the actual dietary adherence scores for a. Baseline and b. Final 

time points. Boxplots showing the variation of the correlations between the actual and predicted dietary adherence scores obtained using iterative 

Random Forest prediction models with different number of top predictive features for c. Baseline and d. Final time-points. For both the time-

points, the performance was observed to peak when the number of top features used was 75. Based on this, threshold of 75 top features was 

obtained for both time-points. The merger of the two lists of 75 features produced the final list of 129 features having optimal predictive ability 

across at least one of the time points. 
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Supplementary Figure 7: a. Baseline Dietary Adherence Scores for the five different nationalities. b. Mean squared dietary adherence prediction 

errors for samples from five different nationalities c. Correlations and d. Mean squared errors between actual and predicted dietary adherence 

scores obtained using two different versions of iterative Random Forest models (two fold cross validation) separately for the samples from 

Netherlands (at baseline), While the first version was built using the set of 129 Diet-Associated Marker taxa as described in the previous figures 

(labelled as ‘Markers’) and the other using all 1064 OTUs besides the Diet-Associated Markers (labelled as ‘Non-Markers’).  
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Supplementary Figure 8: Boxplots showing the variation of the cumulated abundances of the DietPositive and the DietNegative OTUs across 

overlapping windows of subjects with increasing adherence to the diet across the entire cohort as well as within the samples for the baseline and 

post-intervention time points (See Methods). 
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Supplementary Figure 9. Detection of specific taxonomic modules across the gut microbiomes using the iBBiG approach and association of specific modules with dietary 

adherence and reduced frailty. a. OTU detection profiles of the various modules obtained using the iBBiG approach. The color codes used for the various modules are: the 

primary core ‘A’ in pink; the Prevotella-associated ‘B’ in blue; the Alistipes-associated ‘C’ in orange; the Bacteroides-associated ‘D’ in maroon; the reduced core ‘E’ in 
darkgreen and; ‘F’ in light green. b. Bar-plot showing the number of samples containing each module (top) as well as the number of OTUs constituting each module 

(bottom). c. Heatmap showing the normalized abundances of the various genera within the OTUs constituting each module. d. Relative association of each of the modules 

with diet scores and frailty. The proportion bar-plots on the top right show the relative representation of the OTUs showing positive and negative association with diet scores 

within each module. The bar-plot on the bottom shows the log-fold increase in the number of samples containing each module in the individuals with reduced frailty (across 

time-points) as compared to those showing no change or an increase of frailty. Overall, these trends show the specific association of certain iBBiG modules with diet and 

frailty. While Modules B and D are associated positively with the Mediterranean diet and reduced frailty, Modules C shows the opposite trend. 

 

Supplementary material Gut

 doi: 10.1136/gutjnl-2019-319654–11.:10 2020;Gut, et al. Ghosh TS



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 10: a. Boxplots showing the variation of the cumulated abundance of the DietPositive and DietNegative OTUs in the 

Frail, Pre-Frail and the Non-Frail individuals. b. Variation of the effect-size differences (cohens’ d) of the across time-point changes of the 

DietPositive OTUs, DietNegative OTUs and Not-Associated OTUs in Individuals with Reduced Frailty versus those with Increased or No Change 

in Frailty. c. Proportional representation of individuals with reduced and increased frailty in the control and intervention cohort. There was a 

marginally significant increase (Fishers’ test P-value) in the representation of individuals with increased frailty in the control cohort. d. Boxplots 

showing the variation of adherence score changes in individuals with reduced frailty and those with increased or no change in frailty status. 
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Supplementary Figure 11: Heatmap showing the variation of the association patterns (obtained using Spearman Rhos) of the adherence associated 

marker OTUs (arranged from top to bottom in increasing order of their correlations with the adherence scores) with a. each of the pro/anti-

inflammatory cytokine levels and b. the different measures of frailty, cognitive function. For each cell, colors indicate the Spearman Rho values 

(as shown), ** indicates a significant association with FDR corrected P-value < 0.15, * indicates a marginal association with nominal P-value < 

0.05. The DietPositive and the DietNegative OTUs are also demarcated. Measures highlighted in red are those, for which the association patterns 

with the individual OTUs were observed to exhibit significant positive or negative correlations (Spearman correlation FDR corrected P-value < 

0.15) with the OTU-adherence score association values.  
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Supplementary Figure 12: Heatmap showing the partial spearman associations of the different dietary components with the marker OTUs 

arranged in increasing order of their association with the dietary adherence scores. For each marker OTU, partial spearman correlations were 

obtained after adjusting for the confounding effects of age, BMI, gender, country and poly-pharmacy. 
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Supplementary Figure 13. Violin plots showing the a. Partial spearman correlations between the consumption of different dietary components 
and the microbiome index across all time-points taking into account age, bmi, gender, country and poly-pharmacy. b. Partial spearman correlations 
between the consumption of different dietary components and the microbiome index across all subjects at the baseline taking into account age, 
bmi, gender, country, disease-status and poly-pharmacy. 
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Supplementary Figure 14. Boxplot showing the comparison of the MedDiet modulated microbiome index for individuals suffering from heart 

attack (a), inflammatory disorders (b), Type II Diabetes (c) and Cancer (d) with the control individuals (tagged as no-disease) at baseline. Boxplot 

showing the variation of microbiome index (e) and the abundance ratio of the DietPositive to DietNegative markers (f) for individuals with 

multiple, single and no-diseases at the baseline. The P-values of the Mann-Whitney U tests are also indicated for each pairwise-comparisons. 
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Supplementary Figure 15: a. Violin plot showing the association (partial Spearman correlations) of the different measures of frailty, cognitive 

function and inflammatory marker levels (identified in figure 4) with the MedDiet modulated Microbiome index at the baseline after taking into 

account the age, BMI, gender, nine different disease pathologies (with greater or equal to 10 subjects), polypharmacy and gender as a confounder. 

b. Violin plot showing the association (partial Spearman correlations) of the different measures of frailty, cognitive function and inflammatory 

marker levels (identified in figure 4) with the MedDiet modulated Microbiome index at both the baseline and follow-up time points after taking 

into account the age, BMI, gender, polypharmacy and gender as a confounder. X-axis contains the spearman Rho values, and Y-axis indicates the 

-log (base 10) of the P-values. While most negatively associated measures are expected to be extreme left of the plot, the most positively associated 

measures are expected to be extreme right of the plot. Points are colored based on the significance of the obtained associations (Red indicates 

associations with FDR corrected P-value < 0.1). 
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Supplementary Figure 16: Scatterplots showing the correlation between the microbiome response (that is the across time-point change in microbiome indices) and a. Baseline 

dietary adherence scores and b. final dietary adherence scores. c. Violin plots showing the spearman correlations of the changes in the different cytokine levels with the change 

in microbiome indices between the follow-up and baseline time points. X-axis contains the spearman Rho values, and Y-axis indicates the -log (base 10) of the P-values. While 

most negatively associated measures (that is those cytokines for which negative changes in levels are associated with positive changes in microbiome indices) are expected to 

be extreme left of the plot, the most positively associated measures (that is those cytokines for which positive changes in levels are associated with positive changes in 

microbiome indices) are expected to be extreme right of the plot. Points are colored based on the significance of the obtained associations (Red indicates associations with FDR 

corrected P-value < 0.1). Cumulated levels of anti-inflammatory cytokines were calculated as the mean ranked abundances of anti-inflammatory cytokines IL-10, IL-4, IL-5 

and IL-1ra. Ratios of hsCRP to anti-inflammatory cytokines were calculated as ratios of the ranked abundance of hsCRP and the mean ranked abundances of anti-inflammatory 

cytokines IL-10, IL-4, IL-5 and IL-1ra. d. Graph showing the marginal or significant associations (dotted line indicating marginal associations with P < 0.1 and solid line 

indicating P < 0.05) between the across time-point changes of the various measures obtained using pairwise linear regressions. 
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Supplementary Figure 17: Violin plots showing the inferred metabolite a. consumption and b. production profiles showing significant (positive 

or negative) associations (Spearman correlation; FDR corrected P-value < 0.15) with microbiome responses. While most negatively associated 

measures are expected to be extreme left of the plot, the most positively associated measures are expected to be extreme right of the plot. The 

points are colored based on the metabolite groups as indicated on the top panel of the Figure. 

 

 

 

Supplementary material Gut

 doi: 10.1136/gutjnl-2019-319654–11.:10 2020;Gut, et al. Ghosh TS



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 18. a. Schematic representation of the bile acid conversion pathway, highlighting the specific sub-module converting 

glycine/taurine-conjugated bile acids (like TCA, GCDCA) to carcinogenic secondary bile acids (LCA/DCA), through CA and CDCA, that is 

associated with a negative change in microbiome index highlighted in red. b. Boxplots showing the spearman correlations of the abundances of 

the DietPositive and DietNegative OTUs with the measured plasma levels of CA, DCA and GCDCA for the subset of Italian and Polish individuals. 

c. Boxplot comparing the across the time-point changes in the microbiome index for individuals with increasing GCDCA/CA levels (grouped into 

three equal terciles with increasing GCDCA/CA ratios). P-values of pairwise Mann-Whitney U-tests are also indicated. 
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Supplementary Figure 19: Inter-OTU co-occurrence networks obtained for the different nationalities. DietPositive, DietNegative and the non-

associated OTUs are shown in green, red and gray color, respectively. Despite variations in their overall structures, all networks gave a clear 

picture whereby in the DietPositive taxa were placed in the centre of the neworks, while the DietNegative taxa in the periphery. 
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Supplementary Figure 20: Variation of the degree and betweenness centrality of the different groups of taxa within the co-occurrence networks 

for the different nationalities. 
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Supplementary Figure 21: a. Variation of the degree and betweenness centrality of the different groups of taxa across individuals belonging to 

the overlapping groups of increasing diet adherence scores. b. Relative co-occurrence propensities of the different groups of taxa with the iBBiG 

taxonomic modules. Relative co-occurrence propensities of the different groups with the frailty-associated Module C is provided in figure 5d. 
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SUPPLEMENTARY TEXT 3 

COMPLETE DESCRIPTION OF METHODS USED FOR THE BIOINFORMATIC 

STATISTICAL ANALYSIS OF THE MICROBIOME DATA 

 

Pre-processing of amplicon reads 

The FLASH program was used to join the paired-end reads (25). The data was barcode-

corrected and quality filtered using the QIIME package; followed by clustering of reads into 

Operational Taxonomic Units (OTUs) (97% identity threshold) using USEARCH Clustering 

algorithm; followed by chimeric removal (26, 27). The taxonomic classification of the 

representative sequences for each OTU was performed using both the RDP classifier (genus 

level: 0.8 confidence threshold) and the SPINGO classifier (species level: 0.7 confidence 

threshold) (28, 29).  

 

Multi-variate analysis of dietary profiles and taxonomic profiles 

Multivariate analyses using Principal Coordinate Analysis (PCoA) were performed using the 

ade4 package of the R programming interface, using Spearman distances of the individual 

sample profiles as well as the across time point changes (final-baseline).To test the significance 

of the between-country variation of the baseline dietary and microbiome profiles, 

Permutational Analysis of Variance (PERMANOVA) was performed on the PCoA objects 

using the adonis function of the vegan R package. Procrustes analysis was performed to 

quantify the relationships between the baseline diet and microbiome profiles using the 

procrustes function of the vegan package. The Shannon diversities of the samples were 

obtained using the diversity function of the vegan R package.  

 

Machine Learning-based identification of microbiome taxa associated with the dietary 

intervention 

The Machine learning based Random Forest (RF) approach (implemented in the randomForest 

package of R) was used to identify microbiome taxa significantly associated with NU-AGE 

FBDG adherence scores. We first divided individuals into three equal tertiles, namely ‘High 

Adherence’, ‘Medium Adherence’ and ‘Low Adherence’ in decreasing order of the change in 

adherence across time-points and the samples from each into two cohorts corresponding to the 

baseline and final time-points. Two separate models were created for the baseline and the final 

time points. The performance of the models was measured by calculating the correlation 
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between the actual and the predicted food scores obtained using the models. The RF approach 

provided the feature score importance scores for each microbiome component (OTUs) 

(indicating the extent of association of these with the dietary adherence scores). For identifying 

the most-predictive features, iterative random forest models (n=100, sample subset-size=100) 

with varying number of features (selected in decreasing order of their feature importance 

scores) were obtained using the randomForest package (two-fold cross validation) and their 

performances compared. Finally, to identify the OTUs associated with dietary adherence, a 

Reboot approach (using Spearman correlations) was used to identify OTUs that were 

significantly associated with adherence scores with an FDR corrected P-value < 1e-5 (30). 

OTUs positively and negatively associated with diet were classified as DietPositive and 

DietNegative, respectively. A pictorial representation of the workflow adopted for this entire 

step is provided in Supplementary figure 1. 

 

Overview: iBBiG is based on the detection profile of the taxonomic units (in this case, the 

Operational Taxonomic Units (OTUs)). It then utilizes an iterative, heuristic, genetic-algorithm 

based methodology to identify modules of taxa within a microbial community that tend to show 

strong co-occurrence relationships across a given population of microbiomes. The primary 

advantage of this strategy is its flexibility, as it allows identification of over-lapping modules 

such that certain taxonomic units can be part of multiple modules. Such a partitioning strategy 

makes more biological sense as certain taxa (or species) can be part of multiple guilds because 

of their functional versatility or may be functionally specialized (i.e. belonging to specific 

guilds).  

 

Method: For identifying modules within the gut microbiome, we used the iterative Binary Bi-

clustering of Gene-sets (iBBiG) approach (38). Rather than profiling abundances or 

proportions, iBBiG investigates the detection profile of the taxonomic units or OTUs. 

Subsequently, an iterative, heuristic, genetic-algorithm based methodology is used to identify 

taxonomic modules that tend to show strong co-occurrence relationships across a given 

population of microbiomes. For performing the iBBiG based clustering, we used the iBBig 

function available within the Bioconductor package of R. While OTUs belonging to the 

different modules were then classified based on their clustering patterns, samples were 

classified based on the occurrence of the different iBBiG modules within them. The taxonomic 

compositional pattern of each module was then obtained by collating the RDP-based genus 

classification of each OTU and subsequently rank-normalizing these based on the abundance 
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of each genus (in terms of the number of OTUs) across a module. To associate the modules 

with frailty, we first obtained the frailty status of each individual at each time-point (0: Non 

Frail; 1: Pre Frail; 2: Frail). Subsequently based on the changes across time-points, individuals 

across the cohorts were classified as ‘Reduced Frailty’, ‘No Change’ and ‘Increased Frailty’. 

The representation of each of the modules were obtained at both the time-points for each of 

three groups of individuals. The occurrence changes of each module (the number of samples 

in which a module is present at follow-up divided by the number of samples the module is 

present in at the baseline) were computed for each group. The log fold changes in these ratios 

in the Reduced Frailty with respect to the Increased frailty groups would provide the 

enrichment or depletion of the modules in individuals with reduced frailty as compared to those 

showing an increase in frailty across time-points. A positive change would indicate enrichment, 

and a negative value would indicate depletion. To compare the patterns across modules X and 

Y, Chi-square tests (using the chisq.test function of R) were then performed on the contingency 

tables containing four values, namely occurrence at baseline and follow-up of reduced frailty 

and occurrence at baseline and follow-up of increased frailty, corresponding to the two 

modules. To check for the significance of the differences of the occurrences across modules in 

terms of their diet association, we obtained number of times a module was present in the list of 

DietPositive and the DietNegative OTUs, and subsequently compared them using the Fishers’ 

Exact test (fisher.test function of R).  

 

Associating dietary adherence and microbiome changes with frailty and inflammation 

For associating the abundances of the adherence associated marker OTUs with the different 

measures of frailty, cognitive function and cytokine profiles, we computed Spearman 

correlations using the corr.test function of the psych package in R (along with the Benjamini-

Hochberg corrected p-values).  

To account for various confounders, we used Partial Correlations (partial.r and the 

corr.p functions of the psych R package). Partial correlations measure the strength and the 

direction of the association between two variables considering the effect of confounding 

variable (s). Partial Correlations are like multiple regressions with confounders but not limited 

to specific distributions of the response and predictor variables. Further, one can compute rank-

based non-parametric measures of association like the Spearman rho (which we have used in 

this study), after considering the confounding effect of other factors like adherence scores or 

age/BMI/gender.  
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Computation of Microbiome Indices 

A pictorial representation of the methodology for this purpose is described in Supplementary 

figure 2. This scoring scheme ‘rewards’ samples with higher abundances of Marker OTUs 

with increasingly positive association with adherence scores and taxes those which have higher 

abundances of Marker OTUs with negative associations with adherence scores. 

For each sample, the diet-modulated microbiome score was computed using the 

following formula: 

∑across all marker OTUs (OTU correlation with Diet adherence scores) * Abundance of the OTU 

To avoid over-fitting, leave-one out strategy was applied where for computing the microbiome 

index for a given sample, the sample was not considered while calculating the OTU correlations 

(with Diet Adherence scores).  

 

Obtaining Inferred Microbial Metabolite Profiles based on Species Abundance Profiles 

Literature annotated Species-to-Metabolite consumption/production associations were already 

available as part of the Virtual Metabolic Human database as well as those obtained in a recent 

meta-analysis by Sung et al (32, 33). These were parsed to create a present/absence information 

map of around 300 metabolite production and consumption profiles in greater than 900 species 

in a 0 (absent) and 1 (present) notation. Given the SPINGO-based species abundance profile, 

from the 16S amplicon data, the inferred metabolite profile was then obtained as an inner 

product of the species abundance profile and the species-to-metabolite map.  

 

Generation of co-occurrence networks and computation of centrality measures 

We used the Reboot Approach for generating the inter-microbial co-occurrence/co-inhibition 

networks (30) (described in Supplementary text 4). The co-occurrence networks obtained 

were visualized using Cytoscape (34). For any network, two different centrality measures were 

calculated for the nodes, namely degree centrality and betweenness centrality using the igraph 

R package. The relative co-occurrence propensities between any two groups of taxa were 

calculated as the log of the number of positive edges divided by the number of negative edges.  

Given any two features (in this case, the OTUs), the Reboot approach computes the 

association between the two features using two different distributions of association measures 

obtained using repeated iterations as described below(52). The association measure can be any 

score, like the Pearson correlation, Spearman correlation, the Regression coefficients, or even 

the effect size measures. The first distribution (bootstrap distribution) was obtained by taking 

the repeated sub-samples of randomly selected observations and then computing the 
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association between the two features. This profiled the association values across an entire 

observation landscape, thereby removing biases which could be present because of specific 

samples. The second distribution (null distribution) was obtained by performing an equal 

number of iterations, where in each iteration, a fixed set of values (which in this case was 50%) 

are swapped across samples for both the features. The profiles were then re-normalized and the 

associations computed for the two features. The distribution of the values obtained in the two 

distributions were then compared using any comparative tests (which in this case was Mann-

Whitney). The p-values thus obtained were then False Discovery Rate (FDR) corrected 

(Benjamini-Hochberg) and those pairs of features having FDR-corrected associations of less 

than 1e-5 (threshold used in this study) were inferred to be significant and an edge drawn 

between them in the network. The directionality of the association was taken as the sign of the 

median value of the bootstrap distribution. While pairs of features with significant positive 

associations were used to create the co-occurrence network, those with negative associations 

were used to create the co-inhibition network. 

 

*Please refer to the main document for the corresponding reference numbers. 
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Baseline Follow-up Genus Species Final

OTU_4560 0.99412752 0.5041946 Unclassified Unclassified Unclassified

OTU_3114 0.98993289 0.9798658 Faecalibacterium Faecalibacterium_prausnitzii Faecalibacterium_prausnitzii

OTU_147 0.86996644 0.9941275 Unclassified Unclassified Unclassified

OTU_1205 0.95721477 0.9530201 Unclassified Unclassified Unclassified

OTU_300 0.96224832 0.9102349 Unclassified Unclassified Unclassified

OTU_584 0.98573826 0.9916107 Faecalibacterium Faecalibacterium_prausnitzii Faecalibacterium_prausnitzii

OTU_69 0.99832215 0.6526846 Unclassified Unclassified Unclassified

OTU_336 0.97986577 0.9781879 Roseburia Unclassified Roseburia_Unclassified

OTU_207 0.98238255 0.2332215 Unclassified Unclassified Unclassified

OTU_11233 0.2307047 0.9983221 Blautia Ruminococcus_torques Ruminococcus_torques

OTU_67 0.97651007 0.9974832 Unclassified Unclassified Unclassified

OTU_5978 0.98909396 0.658557 Unclassified Unclassified Unclassified

OTU_79 0.85151007 0.9899329 Eubacterium Eubacterium_xylanophilum Eubacterium_xylanophilum

OTU_131 0.90855705 0.9639262 Unclassified Unclassified Unclassified

OTU_1093 0.99496644 0.9211409 Anaerostipes Unclassified Anaerostipes_Unclassified

OTU_24 0.93875839 0.8557047 Unclassified Unclassified Unclassified

OTU_36 0.79026846 0.9630872 Prevotella Prevotella_copri Prevotella_copri

OTU_364 0.8909396 0.9513423 Clostridium Clostridium_lactatifermentans Clostridium_lactatifermentans

OTU_12121 0.95553691 0.8842282 Eubacterium Eubacterium_eligens Eubacterium_eligens

OTU_2352 0.95302013 0.1082215 Blautia Unclassified Blautia_Unclassified

OTU_1569 0.97902685 0.8213087 Clostridium Unclassified Clostridium_Unclassified

OTU_139 0.96979866 0.9991611 Clostridium Unclassified Clostridium_Unclassified

OTU_1006 0.41694631 0.9714765 Prevotella Prevotella_copri Prevotella_copri

OTU_1740 0.97147651 0.8708054 Unclassified Unclassified Unclassified

OTU_103 0.9295302 0.9437919 Unclassified Unclassified Unclassified

OTU_9966 0.97315436 0.7709732 Unclassified Unclassified Unclassified

OTU_8631 0.14177852 0.9446309 Prevotella Prevotella_copri Prevotella_copri

OTU_3603 0.68959732 0.9865772 Unclassified Unclassified Unclassified

Ranked Feature Correlation

OTU

Supplementary Table 2: List of top 129 OTU markers obtained using the Random Forest approach for the prediction of dietary compliance scores, along with 

their SPINGO classifications, association with food scores as well as the ranked feature importance scores for the baseline and followup time points
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OTU_1594 0.94211409 0.8011745 Eubacterium Eubacterium_rectale Eubacterium_rectale

OTU_32 0.98741611 0.9505034 Eubacterium Eubacterium_eligens Eubacterium_eligens

OTU_124 0.56459732 0.9731544 Unclassified Unclassified Unclassified

OTU_11498 0.23238255 0.989094 Anaerostipes Anaerostipes_hadrus Anaerostipes_hadrus

OTU_250 0.76090604 0.9790268 Unclassified Unclassified Unclassified

OTU_1221 0.95385906 0.9236577 Faecalibacterium Faecalibacterium_prausnitzii Faecalibacterium_prausnitzii

OTU_306 0.7533557 0.977349 Clostridium Unclassified Clostridium_Unclassified

OTU_120 0.9488255 0.4697987 Unclassified Unclassified Unclassified

OTU_1069 0.9647651 0.9966443 Clostridium Clostridium_disporicum Clostridium_disporicum

OTU_30 0.93791946 0.9127517 Clostridium Clostridium_ruminantium Clostridium_ruminantium

OTU_11429 0.97399329 0.7927852 Blautia Unclassified Blautia_Unclassified

OTU_8606 0.50838926 0.9572148 Unclassified Unclassified Unclassified

OTU_233 0.84563758 0.9463087 Eggerthella Eggerthella_lenta Eggerthella_lenta

OTU_6577 0.88255034 0.9488255 Blautia Blautia_faecis Blautia_faecis

OTU_64 0.77097315 0.9924497 Clostridium Unclassified Clostridium_Unclassified

OTU_86 0.92785235 0.9412752 Bacteroides Bacteroides_thetaiotaomicron Bacteroides_thetaiotaomicron

OTU_273 0.59647651 0.9689597 Clostridium Unclassified Clostridium_Unclassified

OTU_1280 0.94295302 0.2944631 Coprococcus Coprococcus_catus Coprococcus_catus

OTU_144 0.51677852 0.9521812 Parabacteroides Unclassified Unclassified

OTU_3372 0.70469799 0.9555369 Ruminococcus Ruminococcus_bromii Ruminococcus_bromii

OTU_12119 0.98322148 0.6417785 Unclassified Unclassified Unclassified

OTU_4016 0.94798658 0.3011745 Unclassified Unclassified Unclassified

OTU_6257 0.89597315 0.9379195 Roseburia Roseburia_hominis Roseburia_hominis

OTU_2604 0.96057047 0.8808725 Blautia Blautia_faecis Blautia_faecis

OTU_3860 0.94043624 0.817953 Blautia Ruminococcus_obeum Ruminococcus_obeum

OTU_470 0.97231544 0.4010067 Unclassified Unclassified Unclassified

OTU_21 0.96560403 0.965604 Anaerostipes Anaerostipes_hadrus Anaerostipes_hadrus

OTU_109 0.97483221 0.8372483 Clostridium Clostridium_leptum Clostridium_leptum

OTU_105 0.95637584 0.909396 Barnesiella Barnesiella_intestinihominis Barnesiella_intestinihominis

OTU_195 0.94379195 0.8833893 Unclassified Unclassified Unclassified

OTU_3501 0.55201342 0.9932886 Clostridium Unclassified Clostridium_Unclassified

OTU_9359 0.87248322 0.9387584 Faecalibacterium Faecalibacterium_prausnitzii Faecalibacterium_prausnitzii

OTU_168 0.87332215 0.9706376 Unclassified Unclassified Unclassified
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OTU_3985 0.97063758 0.9110738 Faecalibacterium Faecalibacterium_prausnitzii Faecalibacterium_prausnitzii

OTU_34 0.9614094 0.8598993 Eubacterium Eubacterium_hallii Eubacterium_hallii

OTU_1356 0.73657718 0.9681208 Unclassified Unclassified Unclassified

OTU_5591 0.95050336 0.7063758 Unclassified Unclassified Unclassified

OTU_704 0.88422819 0.9404362 Unclassified Unclassified Unclassified

OTU_57 0.93959732 0.9244966 Eubacterium Eubacterium_desmolans Eubacterium_desmolans

OTU_16 0.96895973 0.9312081 Bifidobacterium Bifidobacterium_longum Bifidobacterium_longum

OTU_4302 0.96812081 0.8364094 Bifidobacterium Bifidobacterium_longum Bifidobacterium_longum

OTU_952 0.97567114 0.7206376 Eubacterium Unclassified Eubacterium_Unclassified

OTU_179 0.96644295 0.1635906 Unclassified Unclassified Unclassified

OTU_263 0.84647651 0.9614094 Veillonella Veillonella_dispar Veillonella_dispar

OTU_789 0.9840604 0.4572148 Parabacteroides Parabacteroides_distasonis Parabacteroides_distasonis

OTU_695 0.94714765 0.7986577 Blautia Unclassified Blautia_Unclassified

OTU_49 0.64765101 0.9395973 Eubacterium Eubacterium_siraeum Eubacterium_siraeum

OTU_178 0.9454698 0.9723154 Unclassified Unclassified Unclassified

OTU_152 0.9807047 0.738255 Unclassified Unclassified Unclassified

OTU_7093 0.55033557 0.9597315 Unclassified Unclassified Unclassified

OTU_2056 0.88842282 0.9823826 Unclassified Unclassified Unclassified

OTU_6936 0.01510067 0.9907718 Unclassified Unclassified Unclassified

OTU_1034 0.57969799 0.9496644 Unclassified Unclassified Unclassified

OTU_2345 0.65604027 0.9739933 Unclassified Unclassified Unclassified

OTU_1 0.85234899 0.942953 Eubacterium Eubacterium_rectale Eubacterium_rectale

OTU_4661 0.95889262 0.8473154 Clostridium Unclassified Clostridium_Unclassified

OTU_1914 0.36577181 0.9647651 Clostridium Unclassified Clostridium_Unclassified

OTU_98 0.86157718 0.9471477 Clostridium Unclassified Clostridium_Unclassified

OTU_1621 1 0.9169463 Unclassified Unclassified Unclassified

OTU_7618 0.96728188 0.7994966 Blautia Blautia_faecis Blautia_faecis

OTU_89 0.9135906 0.9538591 Eubacterium Eubacterium_ventriosum Eubacterium_ventriosum

OTU_162 0.89848993 0.9848993 Flavonifractor Flavonifractor_plautii Flavonifractor_plautii

OTU_45 0.94630872 0.9840604 Clostridium Unclassified Clostridium_Unclassified

OTU_287 0.94966443 0.7718121 Unclassified Unclassified Unclassified

OTU_23 0.90520134 0.9672819 Clostridium Clostridium_ramosum Clostridium_ramosum

OTU_11 0.87080537 0.9421141 Blautia Blautia_luti Blautia_luti
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OTU_10307 0.96308725 0.7583893 Clostridium Unclassified Clostridium_Unclassified

OTU_22 0.89765101 0.9765101 Ruminococcus Unclassified Ruminococcus_Unclassified

OTU_1582 0.8716443 0.9454698 Unclassified Unclassified Unclassified

OTU_9740 0.38926174 0.954698 Unclassified Unclassified Unclassified

OTU_307 0.74412752 0.9479866 Clostridium Unclassified Clostridium_Unclassified

OTU_384 0.60067114 0.9815436 Unclassified Unclassified Unclassified

OTU_347 0.87416107 0.9857383 Clostridium Unclassified Clostridium_Unclassified

OTU_84 0.86493289 0.9832215 Unclassified Unclassified Unclassified

OTU_2336 0.95973154 0.7625839 Blautia Unclassified Blautia_Unclassified

OTU_4369 0.60151007 0.9563758 Clostridium Clostridium_aldenense Clostridium_aldenense

OTU_65 0.88674497 0.9580537 Unclassified Unclassified Unclassified

OTU_719 0.94127517 0.7365772 Clostridium Unclassified Clostridium_Unclassified

OTU_414 0.34312081 0.9605705 Mogibacterium Unclassified Mogibacterium_Unclassified

OTU_5014 0.98489933 0.9697987 Blautia Ruminococcus_torques Ruminococcus_torques

OTU_5819 0.94463087 0.7197987 Clostridium Clostridium_sporosphaeroides Clostridium_sporosphaeroides

OTU_125 0.9966443 0.454698 Unclassified Unclassified Unclassified

OTU_10029 0.76677852 0.9622483 Unclassified Unclassified Unclassified

OTU_5862 0.97734899 0.579698 Actinomyces Actinomyces_lingnae Actinomyces_lingnae

OTU_945 0.85067114 0.9807047 Unclassified Unclassified Unclassified

OTU_447 0.99580537 0.9152685 Unclassified Unclassified Unclassified

OTU_375 0.95469799 0.7919463 Clostridium Clostridium_methylpentosum Clostridium_methylpentosum

OTU_1637 0.99244966 0.8733221 Unclassified Unclassified Unclassified

OTU_11425 0.96392617 0.3833893 Blautia Ruminococcus_torques Ruminococcus_torques

OTU_8952 0.98825503 0.9874161 Coprococcus Coprococcus_comes Coprococcus_comes

OTU_291 0.95134228 0.9958054 Collinsella Collinsella_aerofaciens Collinsella_aerofaciens

OTU_52 0.98657718 0.966443 Eubacterium Eubacterium_ramulus Eubacterium_ramulus

OTU_3602 0.95218121 0.9161074 Unclassified Unclassified Unclassified

OTU_10880 0.95805369 0.8716443 Blautia Unclassified Blautia_Unclassified

OTU_14 0.98154362 1 Collinsella Collinsella_aerofaciens Collinsella_aerofaciens

OTU_27 0.97818792 0.9756711 Coprococcus Coprococcus_comes Coprococcus_comes

OTU_9293 0.99748322 0.9144295 Blautia Ruminococcus_torques Ruminococcus_torques

OTU_53 0.99077181 0.9949664 Blautia Ruminococcus_torques Ruminococcus_torques

OTU_1248 0.99161074 0.9588926 Unclassified Unclassified Unclassified
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OTU_76 0.99916107 0.988255 Dorea Dorea_formicigenerans Dorea_formicigenerans

OTU_7369 0.99328859 0.9748322 Dorea Dorea_formicigenerans Dorea_formicigenerans
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SUPPLEMENTARY TEXT 4 

DIET-RESPONSIVE TAXA ARE NOT SPECIFIC TO NATIONALITY 

 

We next checked if the diet-associated taxa differed across the nationalities. As noted above 

different nationalities were characterized by specific gut microbiome composition at baseline 

(figure 1b; Supplementary figure 4a-b) and different dietary adherence scores (Netherland 

and UK having significantly lower scores, followed by Italy with Poland and France having 

the highest) (Supplementary figure 7a) (as also reported by previous studies on this cohort) 

(18, 19). If nationality-specific differences in diet-associated taxa existed, the performance of 

the prediction models might vary across nationalities. However, despite differences in the 

baseline gut microbiome compositions, there was no significant difference in the performance 

of the model (mean squared errors) for the different nationalities except for Netherlands (where 

the error rate was significantly high) (Supplementary figure 7b). This indicates that the 

identified diet-associated taxa were similar across most of the nationalities. The higher error-

rate for the Netherlands could either be a consequence of lower adherence scores or a different 

set of diet-responsive taxa in these individuals. We tested the latter possibility by creating two 

different versions of iterative Random Forest models (two-fold cross validation) for Dutch 

subjects at baseline. While one version was created by using only the 129 diet-associated 

markers, the second version was built upon all OTUs besides the diet-associated markers. We 

observed that the iterative models built using only the 129 diet-associated markers had 

significantly higher correlation and significantly lower mean squared errors as compared to 

those obtained using all OTUs besides the diet-associated taxa (Supplementary figures 7c-d). 

This indicated that the diet-responsive taxa were not specific to nationality. 
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SUPPLEMENTARY TEXT 5 

 

VALIDATING THE ASSOCIATION OF THE DIET-RESPONSIVE TAXA WITHIN 

THE INTERVENTION AND CONTROL COHORTS AS WELL AS WITHIN 

INDIVIDUALS WITH VARYING ADHERENCE TO THE MED-DIET 

 

There were 1224 microbiota datasets corresponding to 612 individuals having matched 

microbiome profiles for both the baseline and the follow-up time points. To further verify their 

association with the MedDiet adherence, we checked the variation of the relative abundances 

of these OTU-groups across an entire adherence landscape. For this we arranged the microbiota 

data (of the individuals) from the entire intervention study in increasing order of their 

adherence to the diet, and subsequently divided them into five equally sized overlapping 

windows (of increasing adherence scores; five overlapping windows of 204 samples with an 

overlap of 102 samples). Adopting such a window approach would illustrate the gradual 

transitions of specific changes across an entire adherence landscape (after eliminating 

variations caused due to specific samples). As expected, profiling the abundance variation of 

the two taxa groups across the windows identified a progressive increase of the DietPositive 

taxa (Kruskal Wallis H-test P-value < 5e-4) and a concomitant decrease of the DietNegative 

taxa (Kruskal Wallis H-test P-value < 3.2e-7) with increasing adherence to the Mediterranean 

diet (Supplementary figure 8). Performing this window-based analysis separately within the 

baseline and final time points also revealed the same pattern (Supplementary figure 8). We 

then checked whether the positive and negative associations of the DietPositive and 

DietNegative taxa in the intervention cohort were also reflected in the across time-point (final 

to baseline) changes in dietary adherence. For each of the diet-associated markers (i.e. the 

OTUs), we computed the log fold change in the gain/loss ratios (the number of individuals in 

whom an OTU is more abundant across the time-points divided by the number of individuals 

in whom it is decreased) in the intervention cohort with respect to the control cohort. We 

observed that for the DietPositive taxa, the intervention to control log fold difference of the 

gain/loss ratios were positive (indicating that the changes were more positive in the intervention 

cohort as compared to the controls) and significantly higher (Mann-Whitney U test P < 1.3e-

4) than those obtained for the DietNegative taxa which were negative (indicating a decrease 
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across time-points in the intervention cohort as compared to the controls) (figure 2c). To 

further profile the changes in the abundance of the markers across individuals with varying 

degrees of changes in their adherence to the diet, we divided them into three equal tertiles, 

namely ‘High Adherence’, ‘Medium Adherence’ and ‘Low Adherence’ in decreasing order of 

their change in adherence across time-points. The abundance changes of the two groups of 

markers (DietPositive and DietNegative) were then profiled across the three groups separately. 

As expected, while the DietPositive OTUs had a significantly positive change in the High 

Adherence as compared to the Low Adherence individuals, an exactly opposite trend was 

observed for the DietNegative markers (figure 2d). These findings suggest that the associations 

of the specific taxa with diet are stable across cohorts as well as across the changes between 

time-points. 
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iBBiG_Module
Number of 

OTUs
Major Genera

a 291

Lachnospiracea_incertae_sedis, Blautia, Clostridium_IV, Coprococcus, Bacteroides, 

Faecalibacterium, Roseburia, Oscillibacter, Gemmiger, Ruminococcus, Alistipes, Bifidobacterium, 

Dorea, Flavonifractor, Clostridium_XlVa, Clostridium_XI, Parabacteroides, Streptococcus

b 153

Clostridium_IV, Coprococcus, Lachnospiracea_incertae_sedis, Oscillibacter, Faecalibacterium, 

Sporobacter, Flavonifractor, Gemmiger, Prevotella, Acetanaerobacterium, Bacteroides, Blautia, 

Butyricimonas, Clostridium_XlVa, Clostridium_XlVb, Enterorhabdus, 

Erysipelotrichaceae_incertae_sedis, Haemophilus, Methanobrevibacter, Parasutterella, 

Pseudobutyrivibrio, Ruminococcus, Slackia

c 90

Clostridium_IV, Alistipes, Oscillibacter, Erysipelotrichaceae_incertae_sedis, Flavonifractor, 

Sporobacter, Gemmiger, Ruminococcus, Acetanaerobacterium, Anaerofilum, Asaccharobacter, 

Blautia, Clostridium_XlVa, Eggerthella, Gordonibacter, Pseudoflavonifractor, Roseburia

d 99

Lachnospiracea_incertae_sedis, Bacteroides, Blautia, Coprococcus, Faecalibacterium, 

Ruminococcus, Alistipes, Clostridium_XlVb, Gemmiger, Anaerostipes, Barnesiella, Butyricimonas, 

Clostridium_IV, Dorea, Haemophilus, Lactococcus, Oscillibacter, Parasutterella, Sporacetigenium

e 142

Lachnospiracea_incertae_sedis, Blautia, Roseburia, Clostridium_XlVa, Bacteroides, Dorea, 

Bifidobacterium, Actinomyces, Clostridium_IV, Coprococcus, Gemmiger, Streptococcus, 

Anaerostipes, Clostridium_XI, Clostridium_XVIII, Faecalibacterium, Flavonifractor, Ruminococcus

f 66

Lachnospiracea_incertae_sedis, Blautia, Clostridium_IV, Faecalibacterium, Ruminococcus, 

Actinomyces, Alistipes, Anaerostipes, Bacteroides, Clostridium_XlVa, Coprococcus, Dorea, 

Eggerthella, Erysipelotrichaceae_incertae_sedis, Flavonifractor, Gemmiger, Gordonibacter, 

Granulicatella, Rothia

SupplementaryTable3: Number of OTUs belonging to each iBBiG module along with the major genera (relative abundance greater than 1% after 

removing the unclassified OTUs within each module
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iBBiG Modules Number of Samples

a 1236

b 420

d 294

c 262

f 65

e 44

Supplementary Table 4: Number of samples classified to various iBBiG modules

Supplementary material Gut

 doi: 10.1136/gutjnl-2019-319654–11.:10 2020;Gut, et al. Ghosh TS



SUPPLEMENTARY TEXT 6 

 

RESULTS OF THE APPLICATION OF THE iBBiG APPROACH ON THE NU-AGE 

DATASET 

The application of the iBBiG approach on the NU-AGE data identified 6 overlapping 

taxonomic modules that had a high mutual co-occurrence (obtained by maximizing the internal 

entropy) within the dataset. These were referred to as modules ‘A’ to ‘F’ (Supplementary 

figure 9a). Based on their detection trends in the overlapping modules, the OTUs could be 

classified as belonging to either a single (e.g. module A) or a combination of any of the six 

modules. This resulted in 36 OTU classifications (including one ‘not classified’ group). In a 

similar manner, a given sample could be classified into one of 15 classifications (and one ‘not 

classified’ group) based on the detection of the various modules in that sample. The 

classifications of each OTU and sample obtained in the iBBiG approach is listed in 

Supplementary Tables 3 and 4. Each of the six modules were characterized by different 

number of OTUs, specific trends of prevalence across individuals, as well as distinct patterns 

of taxonomic composition (Supplementary figures 9b-c). We also identified differential 

associations of each of these modules with frailty, especially with modules B and D being 

significantly enriched in the individuals with reduced frailty from baseline to post intervention, 

as compared to the module C, which was enriched in those with increasing frailty 

(Supplementary figures 9d). This indicates module ‘C’ to be similar to the long-stay-like 

modules we identified in ELDERMET individuals using the iBBiG approach(16). However, 

module ‘C was not only associated with a significant enrichment in individuals with increased 

frailty, but also an increase in representation of the set of DietNegative OTUs (Supplementary 

figure 9d). The observation that adherence to the diet could specifically select against taxa 

associated with frailty indicates the likelihood that the Mediterranean diet successfully 

modulated the gut microbiome in a manner predicted to be negatively associated with frailty. 

A major objective of the NU-AGE dietary intervention was the reduction of frailty and 

inflamm-ageing in the elderly. Therefore, we next investigated in detail the association of 

adherence-associated taxa with frailty as well as with the inflammation status of the 

individuals. 
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SUPPLEMENTARY TEXT 7 

ACROSS TIME-POINT CHANGES OF THE DIET-RESPONSIVE TAXA IN 

INDIVIDUALS WITH VARIED CHANGES IN THEIR FRAILTY STATUS 

Based on the changes in their frailty status across time-points, the individuals across the cohort 

could be divided into three groups, namely those with ‘Reduced Frailty’, ‘No change in frailty’ 
and ‘Increased Frailty’. We then investigated the across time-point changes in these taxa. To 

measure whether the above trends were also reflected in the across time-point changes, for each 

OTU, we computed the effect-size of the time-point changes between the individuals with 

reduced frailty as compared to the other two groups (See Methods). A positive effect size 

change would indicate that the taxa show more positive change (that is either an increase or a 

relative lower decrease) in their abundance across time-points in individuals with reduced 

frailty (as compared to those with no change or increase in frailty), and vice-versa. In this 

regard, while the diet-enriched (that is the DietPositive) taxa showed significantly positive 

changes in the individuals with reduced frailty (as compared to the other two groups), the 

DietNegative group showed the opposite trend (Supplementary figure 10b). These findings 

further affirm our earlier observation of the depletion of the specific frailty-associated iBBiG 

module ‘C’ which was observed to have a negative association with diet as well as the notable 
increase of frail individuals in the control group. In line with these observations, in the control 

group, we observed a marginally significant increase (as compared to the intervention group) 

during the intervention period in the proportion of individuals with increased frailty (Fishers’ 
Test P < 0.06; Supplementary figure 10c). 
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(A)

Category Measure Description Directionality

Hand Grip Strength Mean hand grip strength of the dominant hand (3 trials) Negatively associated with frailty

Gait Speed (Fastest time) Gait Speed Fastest Time taken (2 trials) Positively associated with frailty

Fried Score Fried Score for computing frailty Positively associated with frailty

Geriatric Depression Score
Score for measuring geriatric depression (higher 

values indicate depression)

Negatively associated with cognitive 

function

MMSE
Mini Mental State Examination (Scores range 0-30). 

Higher scores indicate better cognitive function

Positively associated with cognitive 

function

BabCok Memory Score Bab Cock Score for immediate recall
Positively associated with cognitive 

function

CAMDEX-Q Scores Cambridge Examination of Mental Disorders
Positively associated with cognitive 

function

Constructional Praxis CERAD Battery Total Score on Constructional Praxis
Positively associated with cognitive 

function

Verbal Fluency CERAD Battery Total Score on Verbal Fluency Categories
Positively associated with cognitive 

function

(B)

Cytokines

IL-13

Pentraxin-3

Adiponectin

TNF-A

G-CSF

IL-8

Ghrelin

IL-6

Resistin

hsCRP

Physical Frailty

Cognitive Functioning

Supplementary Table 5: List of A) Frailty and Cognitive Function associated measures and B) Cytokines used for performing association analysis with the 

diet modulated microbiome components.
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IL-1b

TGF-b1

IL-4

IL-17

IL-1ra

IL-2

Leptin

sTNF-R1

IFN-g

IL-7

IL-12 p70

sGP130

GM-CSF

IL-5

sIL-6ra

MIP-1b

IL-10

MCP-1-MCAF

IL-18

sTNF-R2

IL-17a
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SUPPLEMENTARY TEXT 8 

ASSOCIATION OF MICROBIOME INDEX WITH THE DIFFERENT DIETARY 

COMPONENTS 

 

Next, given that we calculated the microbiome index as a single value index providing a 

quantitative summary of the abundance patterns of the diet-associated markers (the higher the 

value, the higher the abundance of Diet-Positive taxa and the lower the abundance of 

Diet-Negative taxa, and vice-versa), as a sanity-check, it is important to validate that the 

calculated microbiome index captured the association patterns of the individual diet-associated 

marker OTUs. For this, we repeated the analysis performed earlier for the individual marker 

OTUs (Supplementary figure 12) on the overall microbiome index (after adjustment for 

confounders) (Supplementary figure 13). 
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SUPPLEMENTARY TEXT 9 

ASSOCIATION OF DIET-ASSOCIATED MICROBIOME TAXA WITH DISEASE 

PATHOPHYSIOLOGIES, POLY-PHARMACY, AND OTHER HOST-FACTORS 

The dataset included 11 diseases containing at least three (of 612) diseased subjects at the 

baseline. We first investigated the effect of these diseases on the diet-associated taxa at the 

baseline. Nine of the 11 diseases were associated with lower microbiome indices, significantly 

so for diabetes, heart attack and inflammatory disorders (P < 0.05) and marginally significant 

for Cancer (P < 0.097) (Supplementary table 6; Supplementary figure 14 a-d). Individuals 

with multiple diseases had significantly lower microbiome indices and significantly lower 

ratios of DietPositive to DietNegative taxa abundances compared to those with single or no 

disease, indicating that the diet-favoured microbiome components are negatively associated 

with disease at baseline (Supplementary figure 14e-f). However, when we examined partial 

spearman correlations at baseline, the pattern of association of microbiome index with seven 

of the 10 inflammatory markers and frailty indices (identified in figure 4) remained invariant 

even after taking into account all confounders including age, BMI, gender, poly-pharmacy and 

different disease pathophysiologies (Supplementary figure 15a). All the above associations 

were retained (except for leptin) even after considering age, gender, BMI and poly-pharmacy 

(as confounders) across both the baseline and follow-up time points, further supporting the 

hypothesis that it is the microbiome response that is linked to the above measures (even after 

adjusting for all host associated confounding factors) rather than dietary adherence alone 

(Supplementary figure 15b). 
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SUPPLEMENTARY TEXT 10 

 

ASSOCIATION OF CHANGES (BETWEEN THE FINAL AND BASELINE TIME-

POINTS) IN MICROBIOME INDEX WITH DIFFERENT MEASURES. 

 

To further illustrate the links between diet, microbiome, and health, we investigated the 

associations of the across time-point changes of the various measures with the change in diet 

and microbiome. The change in microbiome index was not associated with either baseline 

dietary adherence scores (linear regression R=-0.034; P < 0.31) or the 12-month dietary 

adherence scores (linear regression R = 0.05; P < 0.12) (Supplementary figure 15a, b). We 

first performed an in-depth investigation of the association of the across-time-point (follow-up 

to baseline) changes in cytokine levels for each individual with the corresponding change in 

microbiome indices. Cumulated levels of anti-inflammatory cytokines were calculated as the 

summed ranked abundances of the anti-inflammatory cytokines (IL-10, IL-4, IL-5 and IL-1ra). 

Ratio of hsCRP levels to anti-inflammatory cytokine levels was calculated as the ratio of the 

ranked abundance of hsCRP to the cumulated levels of anti-inflammatory cytokines (calculated 

as above). Then for each cytokine (or cytokine ratio), the changes were calculated as the 

differences in levels between the follow-up and the baseline time-points. For inflammatory 

markers like hsCRP, MCP1-MCAF, Resistin, positive changes in microbiome indices were 

associated with significant negative changes in the levels of these cytokines (Supplementary 

figure 15c). For other inflammatory cytokines like IL-17, IL-6, MIP-1b, etc, the associations 

were still negative, although not significant. An exact opposite trend was observed for the anti-

inflammatory cytokine IL-10, where positive changes in microbiome indices were associated 

with significant positive changes in the levels of this cytokine. As a consequence, positive 

changes in microbiome indices were associated with negative changes in the hsCRP to anti-

inflammatory cytokine levels (Supplementary figure 15c). 

Additionally, a pairwise regression approach was also used to identify associations 

between microbiome response, adherence score changes and the identified measures of frailty, 

cognitive function and inflammation. Given any two measures, we performed linear 

regressions of the measures with each of the scores using country and age as confounders. We 

did not use FDR correction at this stage as we were investigating associations with specific 

measures. Linear relationships with P-values less than 0.05 and between 0.1 and 0.05 were 

identified as being significant and trend, respectively.  

Supplementary material Gut

 doi: 10.1136/gutjnl-2019-319654–11.:10 2020;Gut, et al. Ghosh TS



The significant associations identified from this analysis are illustrated in Supplementary 

figure 15d) As expected, microbiome response was positively associated with dietary 

adherence changes. However, it was this increased microbiome response that displayed 

positive associations with reduced frailty (Reduced Fried Score), improved cognitive function 

(BabCock Memory Score) and negative associations with inflammation (hsCRP and another 

pro-inflammatory marker MIP-1b). The adherence score change, by itself, did not have any 

significant association (with exception of a negative association with MIP-1b). The above 

results clarify the relationships between diet, microbiome and improved life-status. Change in 

adherence (that is increasing adherence to a Mediterranean diet) is likely to modulate specific 

components of the microbiome. It is this microbiome response, when induced, that is associated 

with reduced frailty and reduced inflammation. However, at each interaction point, there may 

be exceptions. 
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(A)

Disease_Type Number of Subjects

no_disease 324

high_cholesterol 183

thyroid 61

diabetes 30

cancer 27

hypertension 21

food_allergy 15

respiratory_disease 14

swollen_ankle 10

kidney_disease 6

heart_disease 5

inflammation 3

(B)

Direction

Mann-Whitney P-

value

hypertension Lower In Disease 0.005346

diabetes Lower In Disease 0.005646

inflammation Lower In Disease 0.02727

cancer Lower In Disease 0.097

respiratory_disease Lower In Disease 0.1642

food_allergy Lower In Disease 0.2569

swollen_ankle Lower In Disease 0.3086

heart_disease Lower In Disease 0.3212

high_cholesterol Lower In Disease 0.4621

kidney_disease Higher In Disease 0.7945

thyroid Higher In Disease 0.8938

Supplementary Table 6: A. Number of subjects with gut microbiome profiles at baseline that belong to 

the different disease categories (no_disease refers to those individuals who were not identified with 

any disease symptoms). B. Results of the Mann-Whitney test based comparative analysis of the diet-

associated microbiome indices for the individuals with different diseases with control (no_disease 

type) individuals at baseline

Disease Type

Diet-Associated Microbiome Index
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