1	A purified membrane protein from Akkermansia muciniphila or the pasteurized
2	bacterium blunts colitis associated tumourigenesis by modulation of CD8 ⁺ T cells
3	in mice
4	
5	Lijuan Wang, Lei Tang, Yiming Feng, Suying Zhao, Mei Han, Chuan Zhang, Gehui
6	Yuan, Jun Zhu, Shuyuan Cao, Qian Wu, Lei Li, Zhan Zhang
7	
8	
9	Supplementary data

10 MATERIALS AND METHODS

11 Western blotting

Amuc_1100 was a protein of 32 kDa, which was one of the most abundant outer 12 13 membrane proteins encoded by a specific Type IV pili gene cluster in A.muciniphila. 14 To test this protein, we added a His tag to the c-terminal of Amuc_1100. The purified 15 Amuc_1100 with the His tag could be detected with a His-tag antibody. An equal 16 amount of protein was subjected to 10% sodium dodecyl sulfate-polyacrylamide gel 17 electrophoresis and transferred onto polyvinylidene difluoride membranes. The 18 membranes were stained with a primary antibody toward the His tag (A100186-100, 19 GenScript) and then incubated with secondary antibody. Protein bands were visualized 20 by a gel imaging system (Bio-Rad).

21 Figure legends

22	Supplementary Figure 1. Expression and purification of Amuc_1100 in vitro. (A)
23	Representative Gram-staining of A. muciniphila. (B) The coding sequence of
24	Amuc_1100 amplified by PCR. (C) His-tagged Amuc_1100 was cloned into the pET-
25	26b(+) vector using restriction endonuclease sites (NdeI/XhoI). (D) The recombinant
26	plasmids were transformed into BL21 E. coli. Plasmid digested by MluI and XhoI were
27	analysed by 1% agarose gel electrophoresis. (E) The purified Amuc_1100 protein was
28	stained by Coomassie brilliant blue. His-tagged Amuc_1100 was eluted with different
29	concentrations of imidazole. (F) The purified Amuc_1100 was detected by Western
30	blotting.
31	
32	Supplementary Figure 2. Effects of pasteurized A. muciniphila or Amuc_1100 on the
33	faecal microbiota in colitis mice. (A) Schematic diagram of the experimental study
34	design. (B) PLS-DA plot of the faecal microbiota colitis of mice treated with A.
35	muciniphila or Amuc_1100. The Shannon (C), Chao (D), Ace (E) and Sobs (F)
36	indices on the OUT level were analysed. (G) Relative abundance of bacterial species.
37	(H) Ternary plots of the relative abundances of species in colitis mice. (I) Pie chart of
38	the faecal microbiota composition on the species level. Data are presented as the
39	means± SEM and were analyzed ordinary one-way ANOVA with Tukey's multiple
40	comparisons. * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$, compared with respective control.
41	
42	Supplementary Figure 3. Supplementation with pasteurized A. muciniphila or

43	Amuc_1100 suppressed carcinogenesis in mice. (A) Schematic diagram of colitis
44	associated colon cancer (CAC) model induced by AOM/DSS in mice. (B) The colon
45	length at the 8 th , 12 th and 23 rd week. (C) Tumour incidence.
46	
47	Supplementary Figure 4. The microbial composition in control, ulcerative colitis
48	(UC), adenoma (Ad) and CRC patients. (A) Partial least squares discriminant analysis
49	(PLS-DA) plot of the faecal microbiota. (B) Rarefaction curves were used to evaluate
50	the microbial richness of human faeces. (C) Shannon, (D) Chao, (E) ACE and (F)
51	Sobs indices were analysed on OUT level in human. Sobs, Chao and Ace indices
52	reflect community richness, and the Shannon index represents community diversity.
53	Data are presented as the means± SEM and analyzed by ordinary one-way ANOVA
54	with Tukey's multiple comparisons. *** $P \le 0.001$, compared with control; ${}^{\#}P \le 0.05$,
55	^{##} <i>P</i> < 0.01, ^{###} <i>P</i> < 0.001, compared with UC.
56	
57	Supplementary Figure 5. The microbial composition of mice with CAC. (A) PLS-DA
58	plot of the faecal microbiota. (B) Rarefaction curves of the microbial richness in mice.
59	(C) Shannon, (D) Sobs, (E) Chao and (F) ACE indices on the OUT level were
60	analyzed. Sobs, Chao and Ace indices reflect community richness, and the Shannon
61	index represents community diversity. Data are presented as the means± SEM and
62	were analysed by ordinary one-way ANOVA Tukey's multiple comparisons. $**P \leq$
63	0.01, ***P < 0.001, compared with 0 w.
64	

86

65	Supplementary Figure 6. FCM gating strategies. (A) Gating strategy for the analysis
66	of the percentage of CD8 ⁺ T cells in CD3 ⁺ T cells and PD-1 ⁺ or TNF- α^+ cells in CD8 ⁺
67	T cells. (B) Gating strategy for the analysis of the percentage of CD11b ⁺ F4/80 ⁺ cells
68	in lymphocytes, CD16/32 ⁺ cells in CD11b ⁺ F4/80 ⁺ cells and PD-1 ⁺ cells in CD16/32 ⁺
69	CD11b ⁺ F4/80 ⁺ cells.
70	
71	Supplementary Figure 7. Effects of A. muciniphila or Amuc_1100 on T cells in colitis
72	mice. (A) The percentage of CD4 ⁺ T cells in CD3 ⁺ T cells in the spleen. (B) The
73	fraction of CD8 ⁺ T cells in CD3 ⁺ T cells and (C) the expression of PD-1 in CD8 ⁺ T
74	cells in the mesenteric lymph node (MLN). Data are presented as the means± SEM
75	and were analysed by ordinary one-way ANOVA with Tukey's multiple comparisons.
76	** $P \le 0.01$, *** $P \le 0.001$, compared with respective control.
77	
78	Supplementary Figure 8. A. muciniphila or Amuc_1100 enchanced CTLs activation in
79	CAC mice. FCM analysis of CTLs, PD-1 ⁺ CTLs and TNF- α CTLs in the MLN in the
80	8 th (A) and 23 rd week (B).
81	
82	Supplementary Figure 9. Effects of pasteurized A. muciniphila or Amuc_1100 on
83	CD8 ⁺ T cells in the spleens of CAC mice. (A) The percentage of CD8 ⁺ T cells at 8 th
84	and 23 rd week. (B) The fraction of TNF- α^+ cells in CD8 ⁺ T cells at 8 th and 23 rd week.
85	(C) The fraction of PD-1 ⁺ cells in CD8 ⁺ T cells at 8^{th} and 23^{rd} week. Data are

presented as the means± SEM and were analysed with ordinary one-way ANOVA

Gut

87	with Tukey's multiple comparisons. $*P \le 0.05$, $**P \le 0.01$, $***P \le 0.001$, compared
88	with control; ${}^{\#}P < 0.05$, ${}^{\#\#}P < 0.01$, compared with AOM+DSS group.
89	
90	Supplementary Figure 10. Effects of pasteurized A. muciniphila or Amuc_1100 on
91	macrophages in the MLN of CAC mice. (A) The percentage of macrophage
92	$(CD11b^{+}F4/80^{+})$ cells in the 8 th , 12 th and 23 rd week. (B) The expression of CD16/32 in
93	macrophages. (C) The expression of PD-1 in macrophages. Data are presented as the
94	means± SEM and were analyzed with ordinary one-way ANOVA with Tukey's
95	multiple comparisons. * <i>P</i> < 0.05, ** <i>P</i> < 0.01, *** <i>P</i> < 0.001, compared with control;
96	$^{\#}P < 0.05$, $^{\#\#\#}P < 0.001$, compared with AOM+DSS group.

Supplementary fuele 1. Futients Characteristic					
	Control ulcerative colitis adenomatous poly		adenomatous polyps	s colorectal cancer	
	(n=72)	(n=58)	(n=18)	(n=22)	
Gender, male/female	36/36	31/27	13/5	17/5	
Age (year)	44.75±17.7	42.8±14.9	62.6±9.1	64.3±10.1	
Smoking	13.9%	5.2%	22.2%	40.9%	
Glucose (mmol/L) ^a	4.95±0.72	4.32±0.65	4.95±0.72	5.37±1.33	
TG (mmol/L) ^a	1.58±1.21	1.22±0.69	1.95±1.03	1.38±0.21	

Supplementary Table 1. Patients Characteristic

^a, Mean±SEM

score	Body weight loss	stool consistency	bleeding
0	none	none	none
1	0-5%		trace
2	5-10%	loose stool	mild hemoccult
3	10-20%		obvious hemoccult
4	>20%	diarrhea	gross bleeding

Supplementary Table 2. Scoring system for disease activity inde	X
---	---

Cono Nomo	Primer sequence			
Gene Maine	Forward	Reverse		
A. muciniphila	AGAGGTCTCAAGCGTTGTTCGGAA	TTTCGCTCCCTGGCCTTCGTGC		
Amuc_1100	GGGTACCATATGATCGTCAATTCCAAACGC	CCTTGGCTCGAGATCTTCAGACGGTTCCTG		
EUB	AGAGTTTGATCCTGGCTC	TGCTGCCTCCCGTAGGAGT		
16S rRNA	GTGCCAGCMGCCGCGGTAA	GGACTACHVGGGTWTCTAAT		
Mus-TNF-a	CCCTCACACTCACAAACCAC	ACAAGGTACAACCCATCGGC		
Mus-IL-6	GAGGATACCACTCCCAACAGACC	AAGTGCATCATCGTTGTTCATACA		
Mus-IL-18	GTTTACAAGCATCCAGGCACAGC	GGTTTGAGGCGGCTTTCTTTG		
Mus-IFN-γ	GCGCCAAGCATTCAATGAGC	ATCTCTTCCCCACCCCGAAT		
Mus-IL-1β	GCCACCTTTTGACAGTGATGAG	ATGTGCTGCTGCGAGATTTG		
Mus-IL-33	AAGTACAGCATTCAAGACCAGC	TTATTTTGCAAGGCGGGACC		
Mus-Caspase-3	TCTGACTGGAAAGCCGAAACT	AGGGACTGGATGAACCACGAC		
Mus-Bcl-2	ATGATAACCGGGAGATCGTG	GTTCAGGTACTCAGTCACC		

Supplementary Table 3. Specific primers sequences

Mus-GAPDH AGGTCGGTGTGAACGGATTTG

TGTAGACCATGTAGTTGAGGTCA

Antibodies	Use	Source	Identifier
CD3 PerCP-eFluor 710	Flow Cytometry	eBioscience	46-0032-80
CD16/32-PerCP-Cy5.5	Flow Cytometry	eBioscience	45-0161-80
FcR Block	Flow Cytometry	eBioscience	14-0161-86
Fixable Viability Dye eFlour TM 780	Flow Cytometry	eBioscience	65-0865
CD279 (PD-1)-BV421	Flow Cytometry	BD Biosciences	562584
CD4-FITC	Flow Cytometry	BD Biosciences	553046
CD8a-FITC	Flow Cytometry	BD Biosciences	553030
CD11b-FITC	Flow Cytometry	BD Biosciences	557396
F4/80-PE	Flow Cytometry	BD Biosciences	565410
TNF-PE	Flow Cytometry	BD Biosciences	561063
Annexin V/PI	Flow Cytometry	BD Biosciences	556547
CD8 (IHC)	IHC	Abcam	ab108343
F4/80 (IHC)	IHC	Santa Cruz Biotechnology	sc-377009

Supplementary Table 4. Antibodies

Cleaved-caspase 3	IHC	Cell Signaling Technology	9664
γH2AX	IHC	Cell Signaling Technology	7631
Ki67	IHC	Cell Signaling Technology	9449
His-tag	WB	GenScript	A100186-100