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ABSTRACT
Ulcerative colitis (UC) is a chronic idiopathic
inflammatory disease of the gastrointestinal tract that
affects the mucosal lining of the colon. Recent
epidemiological data show that its incidence and
prevalence are increasing in many parts of the world, in
parallel with altered lifestyles, improved access to health,
improved sanitation and industrialisation rates. Current
therapeutic strategies for treating UC have only been
moderately successful. Despite major recent advances in
inflammatory bowel disease therapeutic resources, a
considerable proportion of patients are still refractory to
conventional treatment. Less than half of all patients
achieve long-term remission, many require colectomy,
and the disease still has a major impact on patients’
lives. Moreover, recent data point to slightly raised
mortality. While these outcomes could be partly
improved by optimising current therapeutic strategies,
they clearly highlight the need to develop new therapies.
Currently, a number of promising and innovative
therapeutic approaches are being explored, some of
which will hopefully survive to reach the clinic. Until
such a time arrives, it is important that a better
understanding of the clinical particularities of the
disease, an improved knowledge of the host-microbiome
negative interactions and of the environmental factors
beyond disease development is achieved to obtain the
final and desired outcome: to provide better treatment
and quality of life for patients with this disabling
disease.

INTRODUCTION
Ulcerative colitis (UC) is emerging as an important
public health problem. The disease can occur in all
parts of the world and in all races, but rates vary
widely from industrialised countries to developing
nations. Epidemiological studies show that there is
a significant increase in the incidence of UC in
most regions of the world.1–6 Being a chronic life-
long disease with onset at a young age, the preva-
lence of UC is likely to continue to increase in
future decades. This expected increased prevalence
will translate into increasing healthcare expendi-
tures. UC has already been associated with greater
per patient costs than asthma, hypertension and
chronic obstructive pulmonary disease,7 so the
costs of the disease will become increasingly rele-
vant to the economy as a whole and will become
disproportionally high.8 Furthermore, recent mor-
tality data reveal that there is still a 10% increase in
intermediate- and long-term mortality among
patients with UC, with even higher percentages for
patients diagnosed in childhood or adolescence.9

Current management strategies in UC typically
follow a step-up strategy.10 11 While this approach

can be expected to maintain a considerable propor-
tion of patients in remission, there remains a substan-
tial proportion in whom disease activity will persist
over time,12 13 eventually requiring surgery.12 14

Whereas some of these outcomes might be improved
by optimising current therapeutic strategies, the truth
is that they also highlight a major unmet medical
need.
Previous years have been marked by landmark

discoveries and advancements in our understanding
of the components involved in innate and acquired
immune responses in UC. These discoveries were
paralleled by an exponential increase in the number
of new and investigational therapeutic targets.15

Unfortunately, many of these strategies—although
very auspicious in animal models and preliminary
trials—have not performed well in randomised clin-
ical trials and failed to reach the clinics, highlight-
ing the complexity of the disease and the dynamic
process of inflammation.
In this paper we will start by briefly discussing

some recent and new therapeutic strategies that will
probably soon be used in the clinic. Thereafter, and
since a recent review on new immunological targets
in UC has recently been published in Gut,15 we
have deliberately chosen to focus on two other key
components of UC physiopathology that could be
used as therapeutic targets in UC—the mucosal
barrier and the luminal components. Finally, we
will discuss innovative ways for new drug discover-
ies such as characterisation of plant-derived medi-
cines and computational drug repositioning, and
we will debate some clinical and epidemiological
observations of the disease that could foster the
development of future avenues for translational
research.

PROMISING DEVELOPMENT PROGRAMMES IN UC
Anti-adhesion strategies
The recruitment, homing and adhesion of T lym-
phocytes from the peripheral circulation to the gut
mucosa are crucial steps for maintaining the inflam-
matory process. Regulating the various steps
involved in the migration of leucocytes to the gut
using monoclonal antibodies directed against integ-
rins (α4, α2 and β7), adhesion molecules
(MAdCAM-1, VCAM-1 or ICAM-1), chemokine
receptors (CCR-9) or chemokines (IP-10) could
therefore blunt inflammation and pathological
responses in tissues and become an interesting
pathway to target for drug development in inflam-
matory bowel disease (IBD).16

The first anti-adhesion agent that proved to be
effective in the treatment of IBD was natalizumab,
an anti-α4-integrin IgG4 non-gut selective anti-
body.17 The initial enthusiasm surrounding its
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success for induction and maintenance of remission in CD was
limited by reports of the aggressive progressive multifocal leu-
coencephalopathy (PML). Nevertheless, this agent provided
proof of concept and paved the way for the development of
new anti-adhesion agents such as vedolizumab (VDZ;
MNL-0002), aliforcasen, rhuMAb β7 and CCR9 inhibitors.17

VDZ, an α4β7 integrin-neutralising monoclonal antibody, is the
anti-adhesion molecule next in line to reach the clinic. It is gut-
specific and does not affect the peripheral blood cell count, so it
has the potential to provide gut-selective immunosuppression
with similar or greater efficacy than natalizumab with a lower
risk of systemic infection.18

The results of the phase III randomised, placebo-controlled,
blinded, multicentre study on induction and maintenance of the
clinical response and remission with VDZ in UC (ClinicalTrials.
gov NCT00783718) have recently been presented.19 20 In the
induction study, 374 patients were randomised to receive VDZ
(n=225) or placebo (n=149). At week 6 a significantly greater
proportion of the patients treated with VDZ achieved clinical
response, remission and mucosal healing compared with
placebo-treated patients, with a similar rate of adverse events in
both groups.19 During the maintenance study, 373 patients who
met the response criteria at week 6 were randomised to receive
intravenous VDZ 300 mg every 4 weeks (n=125), every
8 weeks (n=122) or placebo (n=126). Of these patients,
44.8%, 41.8% and 15.9%, respectively, achieved clinical remis-
sion and 56%, 51.6%, and 19.8%, respectively, achieved
mucosal healing at week 52 (p<0.0001). No increase in the
rates of opportunistic or enteric infections was observed with
VDZ and there were no reported cases of PML. Of note, the
population entering the induction and maintenance studies were
considered to be a difficult-to-treat population, with 40% of
patients having received prior treatment with anti-tumour
necrosis factor (TNF) agents. However, subanalysis by failure of
prior treatment with anti-TNF agents, immunomodulators or
corticosteroids did not reveal any differences.21

JAK inhibitors
The Janus kinase ( JAK) family of tyrosine kinases contains four
members: JAK1, JAK2, JAK3 and TYK2. They are responsible
for mediating signal transduction for a variety of cytokine recep-
tors including interleukins (ILs) 2, 4, 6, 7, 9, 12, 15 and 21.15

Upon ligation of these receptors with their ligand cytokine,
JAKs become activated leading to activation of genes relevant to
the immune response.

Tofacitinib is a novel oral small-molecule, selective inhibitor
of JAK1 and JAK3 and, to a lesser extent, JAK2. It suppresses
the differentiation of pathogenic Th1 and Th17 cells as well as
innate immune cell signalling.22 A phase II study of tofacitinib
as an induction therapy in patients with moderately to severely
active UC has been conducted and its results recently pub-
lished.23 One hundred and ninety-four patients were rando-
mised to receive tofacitinib 0.5 mg, 3 mg, 10 mg or 15 mg or
placebo for 8 weeks. A dose-dependent response was observed.
The primary outcome (clinical response) was observed in 78%
of patients receiving tofacitinib at a dose of 15 mg compared
with 42% of patients receiving placebo (p<0.001). Clinical
remission (defined as a Mayo score ≤2 with no subscore >1)
occurred in 48% and 41% of patients receiving tofacitinib
10 mg (p<0.001) and 15 mg (p<0.001), respectively, compared
with 10% of patients receiving placebo.23 A dose-dependent
increase in both low-density and high-density lipoprotein chol-
esterol was observed, and neutropenia occurred in three
patients. Overall, the adverse event rates were similar for

tofacitinib and placebo. However, we must bear in mind that
larger and longer studies using this molecule in rheumatoid
arthritis have reported other dose-related side effects such as
infections (including tuberculosis), increased lipid levels,
anaemia, neutropenia, elevation of transaminases and possibly
changes in renal function.24 25 Larger phase III studies
(ClinicalTrials.gov NCT01465763, NCT01458951 and
NCT01470612) involving tofacitinib are currently recruiting
patients and will be helpful in defining the role of this oral drug
in the treatment of UC.

Interferon γ-inducible protein-10
Interferon γ-inducible protein-10 (IP-10) is a chemokine that
plays an important role in inflammatory cell migration and sur-
vival of epithelial cells, the expression of which is elevated in
the colon and plasma of patients with UC. In a recent 8-week
phase II randomised controlled proof-of-concept study in 109
patients with moderately to severely active UC, BMS-936557, a
monoclonal antibody against IP-10, did not significantly
improve rates of clinical response, clinical remission or mucosal
healing compared with placebo.26 However, in patients who
developed high steady state concentrations of BMS-936557
there was a significantly increased clinical response rate com-
pared with placebo (87.5% for the highest tertile vs 37.0%;
p<0.001).

INNOVATIVE THERAPEUTIC TARGETS IN UC
Reinforcing the mucosal barrier
The normal mucosal barrier is composed of a mucus layer, epi-
thelial cells (including goblet cells and Paneth cells) and
non-epithelial cells and intercellular and tight junctions, all
intrinsically interconnected and working together to synthesise
antimicrobial peptides and prevent luminal antigens and patho-
genic organisms from invading the underlying lymphoid tissue.
Disturbance of this barrier integrity is undoubtedly a key step in
the pathogenesis of UC. Barrier dysfunction enables the influx
of luminal antigens, which will continuously trigger immune
cells in the lamina propria resulting in chronic inflammation.
Restoring altered barrier function is therefore a strong potential
therapeutic target in UC (figure 1).

Phosphatidylcholine (PC)
The mucus layer coating the gastrointestinal (GI) tract is predom-
inantly composed of water, glycoproteins, lipids, other proteins
and nucleic acids.27 Phospholipids, although minor constituents
of the GI mucus, are indispensable for the maintenance of an
intact barrier function where they play a role in establishing the
hydrophobic surface by virtue of their amphipathic nature.28

Phosphatidylcholine (PC), the major mucus phospholipid, has
been found to be substantially reduced in the mucus of patients
with UC compared with patients with Crohn’s disease (CD) and
healthy controls, independent of the state of inflammation.27 29

A lack of PC could result in a reduction in surface hydrophobi-
city, enabling the invasion of luminal noxious agents.
Furthermore, by virtue of being integrated in the plasma mem-
branes of enterocytes, PC participates in various mucosal path-
ways including tumour necrosis factor α (TNFα) signalling,
activation of NF-κB cytokine expression and mitogen-activated
protein kinase.28 30 Therefore, it has been hypothesised that PC
reconstitution in the colonic mucus of patients with UC could
help to restore the structure and density of the mucus, improving
the barrier function and preventing inflammation in UC.31 The
results of phase II preliminary trials were very encouraging.
Using a retarded-release preparation of PC in a randomised
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double-blind placebo-controlled trial, 90% of patients either
reached clinical remission (defined as a clinical activity index
(CAI) ≤3) or significantly improved by >50% compared with
10% in the placebo group.31 In a more difficult to treat patient
population of steroid-refractory UC, steroid withdrawal with
concomitant achievement of a CAI index of ≤3 or CAI improve-
ment of >50% was achieved in 50% (15/30) of the patients
treated with PC compared with 10% (3/30) in the placebo
group.32 Patients participating in the abovementioned trials were
offered an open-label follow-up treatment after completion of
each of the trials. After a mean follow-up time of 26 months,
continuous remission was maintained in 33% of the PC-treated
patients versus 10% of the controls (p=0.004).33 Finally, the
results of a phase IIb placebo-controlled dose-finding study with
an optimised highly enriched PC preparation (LT-02; 0.8 g, 1.6 g
and 3.2 g) in 156 patients with mesalazine-refractory UC were
recently presented. Remission rates doubled in the highest dose
group compared with placebo (31.4% vs 15%) and an overall
improvement in endoscopic disease activity measured by mucosal
healing, as well as an earlier time to symptom resolution, was
found in patients receiving LT-02 treatment.34 35

In summary, PC appears to be a novel therapeutic approach
capable of inducing remission in patients with moderate UC
without the substantial adverse effects seen with steroid or
immunosuppressive therapy. Larger studies to confirm its short-
term benefits and its ability to maintain remission are eagerly
awaited.

Peroxisome proliferator-activated receptor gamma agonists
Peroxisome proliferator-activated receptor gamma (PPARγ) is a
nuclear receptor originally identified for its role in controlling
the expression of a large number of regulatory genes involved in
lipid metabolism, adipocyte differentiation and insulin

sensitisation. More recently, high PPARγ expression has been
reported in the gut, particularly in colonic epithelial cells where
microorganisms such as bacteria and yeast are able to increase
its expression and/or activation.36 PPARγ expression is impaired
in colonic epithelial cells of patients with UC, both in diseased
and healthy mucosa, and negatively correlated with the severity
of endoscopic disease activity.36 37

Thiazolidinediones (TZDs) are PPARγ synthetic agonists used
as insulin-sensitising agents in the treatment of type 2 diabetes.
TZDs have drawn the attention of gastroenterologists over
several years for their prophylactic and therapeutic effects in dif-
ferent experimental models of acute and chronic colitis, redu-
cing intestinal inflammation by 50–70%.38 Several clinical trials
have investigated the efficacy of TZDs in patients with active
UC.39–42 Lewis et al conducted a randomised double-blind
12-week placebo-controlled trial where the efficacy of rosiglita-
zone 4 mg orally twice daily was compared with placebo in 105
patients with mild to moderate UC.40 After 12 weeks of treat-
ment, 44% and 17% of rosiglitazone-treated patients versus
23% and 2% of placebo-treated patients achieved a clinical
response (p=0.04) and clinical remission (p=0.01), respectively.
In this trial serious adverse events were rare. However, these
very encouraging results have been dampened by some safety
issues associated with the TZDs, particularly rosiglitazone,
which was found to be associated with increased risks of cardio-
vascular events.43 44

New hope came from the demonstration that 5-aminosalicylates
are ligands for PPARγ (figure 2).45 This discovery formed the basis
for the rational development of 5-aminosalicylic acid (5-ASA) ana-
logues with a stronger affinity for PPARγ and fewer side effects.
One of these analogues, the (R)-(-)-GED-0507-34, has demon-
strated 100–150-fold higher anti-inflammatory activity than
5-ASA, giving promising results in both in vitro and in vivo

Figure 1 Potential new therapeutic avenues for ulcerative colitis through epithelial barrier restoration by (1) restoring the mucus layer; (2)
stimulating peroxisome proliferator-activated receptor gamma (PPARγ); (3) manipulating endothelium reticulum (ER) stress signalling pathways;
and (4) modifying oxygen-related pathways such as hypoxia-inducible factor 1α (HIF-1α), thereby increasing oxygen tension.
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experimental models of colitis. This compound is currently in
phase II clinical trials.46 These new molecules, coupled with an
innovative system to deliver active substances to the colon, will
make PPARγ modulators potential agents for induction and main-
tenance therapy in UC with limited side effects.

Endoplasmic reticulum stress
Within the colonic mucosa, goblet cells play a central role in
epithelium protection.47 In agreement with the fact that an
early decrease in mucosecretion is a histological pattern of UC,
several recent experimental studies suggest that goblet cells are
particularly sensitive to deregulation of a conserved cellular
homeostatic mechanism—namely, endoplasmic reticulum (ER)
stress.48 ER stress is a highly regulated physiological mechanism
that allows the cell to adapt and survive through the activation
of the three proximal sensors (IRE1, ATF6 and PERK) that
sense the accumulation of misfolded proteins in response to
environmental changes (infection, ischaemia, nutrients).49

Impairment of proper ER stress resolution induces proinflamma-
tory responses and ER stress-dependent apoptosis. Different
animal models have recently shown ways in which genetic
impairment of ER stress resolution leads to spontaneous enter-
itis and colitis.48 50 51

A comprehensive analysis of ER stress responses in UC
showed strong activation of IRE1 and ATF6 pathways (respon-
sible for the induction of ER chaperones and proinflammatory
pathways) associated with an unsuspected weak inhibition of
PERK/eIF2α pathway (figure 3).52 The drastic decrease in eIF2α
phosphorylation observed in the inactive mucosa from patients

with UC was associated with an overexpression of GADD34, an
effector of the negative feedback loop that dephosphorylates
eIF2α. This defect in ER stress-dependent eIF2α phosphoryl-
ation was thought to trigger reprogrammed translation and dis-
ruption of the proteostasis in non-inflamed colonic mucosa
resulting in a weakened epithelial barrier. Pangenomic analysis
of mRNA bound to polysomes isolated from controls and
patients with UC revealed a subset of translationally regulated
genes known to be involved in the pathogenesis of experimental
colitis and UC, as well as selected genes that may play a crucial
role in cell proliferation, ER stress, immune response and colo-
rectal cancer.52 These alterations suggest primitive disturbances
of ER stress susceptible to: (1) reprogramme protein synthesis in
unaffected UC mucosa and (2) alter the capacity of colonic epi-
thelium and, more particularly, goblet cells to cope with stress
modulators derived from the local environment (bacteria, food
digestion products, pollutants). This results in the activation of
inflammatory signals relayed and perpetuated by immune cells.

Pharmacological restoration of the PERK/eIF2 pathway could
represent a new therapeutic strategy in UC, switching the goal
from mucosal to molecular healing of the mucosa.

Improving hypoxia-related pathways
There is a close relation between hypoxia, microvascular dys-
function and inflammation in IBD.53 Hypoxia is believed to
activate NF-κB in intestinal epithelial cells. This leads to
increased production of TNFα and expression of Toll-like recep-
tors, which stimulates leucocyte recruitment, phagocytosis and
adaptive immunity.53 54 Additionally, hypoxia-inducible factor

Figure 2 5-Aminosalicylic acid (5-ASA) is a ligand of peroxisome proliferator-activated receptor gamma (PPARγ): a rationale to design new
activators: (A) After oral administration, 5-ASA goes from the intestinal lumen to the epithelial cell cytoplasm through a cell membrane transporter.
There, 5-ASA binds to PPARγ and induces its nuclear translocation. This binding promotes a PPARγ conformational change leading to the formation
of a heterodimer between PPARγ and the retinoid X receptor (RXR) that recruits the coactivator DRIP (the vitamin D receptor interacting protein).
This complex then binds to a peroxisome proliferator response element (PPRE) on the DNA and induces the transcription of genes involved in the
control of inflammation and carcinogenesis. (B) Based on the PPARγ tridimensional structure, the docking studies of 5-ASA within the ligand-binding
domain of the receptor and the determination of the precise mechanisms of interaction between the two molecules is leading to the rational
development of new PPARγ ligands with higher anti-inflammatory properties such as the (R)-(-)-GED-0507-34.
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1α (HIF-1α), a major oxygen homeostasis regulator that has
been shown to be protective in experimental colitis,55 is upregu-
lated under hypoxic conditions, activating genes essential to cel-
lular adaptation to low oxygen conditions. Hence, handling of
the oxygen sensing mechanisms and improvement of mechan-
isms that regulate mucosal oxygenation and hypoxia signalling
may be potential therapeutic targets for the treatment of UC by
improving the mucosal barrier.

Hyperbaric oxygen therapy (HBOT) involves the applica-
tion of pressures >1 atmosphere absolute (ATA) to an envir-
onment of 100% oxygen. HBOT is used in many medical
conditions due to its positive effects on wound healing.56 By
increasing the amount of dissolved oxygen carried in the
plasma, HBOT increases neoangiogenesis in the early stage of
wound healing, thus facilitating bacterial killing, resistance to
infection, collagen synthesis and epithelialisation.55 Despite
the theoretical potential of HBOT, only a few case reports or
case series have reported on its use in UC.57–61 All treated
patients were reported to be refractory to conventional ther-
apies including immunosuppressors, and all patients had sig-
nificant improvements with minimal adverse effects with
HBOT delivered at 2.0 ATA. Unfortunately, all these studies
were uncontrolled, with small numbers of patients and
absence of strict endpoints. Larger controlled trials examining
the effects of HBOT in patients with UC would be interesting
to pursue.

Harnessing the bugs
The human intestinal microbiota is essential for host well-being
due to their participation in several metabolic, nutritional and
immune functions.62 Recent metagenomic advancements have
provided new insights into the microbiota phylogenetic compos-
ition in health and in disease, as well its genetic and metabolic

potential.63 IBD involves a dysbiosis characterised by a
decreased ratio of protective commensal bacteria from the phyla
Firmicutes and Bacteroidetes (Clostridium XIVa and IV groups,
Bacteroides, bifidobacteria) and a concomitant increase in detri-
mental bacteria from the phyla Proteobacteria and
Actinobacteria.64 Recent analysis of the faecal microbiota of
patients with UC in relapse and remission confirmed the reduc-
tion of bacterial diversity in these patients, mainly affecting
members of the Clostridium cluster IV within the phylum
Firmicutes.65

While it is not clearly understood whether this dysbiosis is
the cause or consequence of inflammation in IBD, it is believed
that this imbalance between beneficial and pathogenic bacteria
promotes perpetuation of inflammation. Therefore, manipula-
tion of the dysbiosis may be an attractive way to prevent disease
or induce its resolution.

Faecal transplant
An increasingly popular approach to reshape the gut micro-
biome is by means of faecal bacteriotherapy or faecal micro-
biome transplantation (FMT). This technique is supposed to
restore the composition and function of the intestinal micro-
biota in diseased patients. It was first used in patients with
Clostridum difficile infection when standard treatments had
failed,66–68 but is increasingly being described in IBD. A system-
atic review of FMT in IBD has recently been published.69 Of
the 26 patients with IBD receiving FMT for refractory disease,
18 were patients with UC. Of the treated patients with UC, 13
displayed symptom resolution or reduction. The number of
infusions (mostly as an enema) varied between 1 and 70.
Although the available evidence is at best weak and limited, the
rationale behind FTM makes it an interesting approach.
However, we must bear in mind that there may be risks

Figure 3 In healthy subjects the three branches of stress (IRE1, ATF6 and PERK) are coordinated and allow adaptation of the colonic mucosa to its
environment. In patients with ulcerative colitis (UC), overactivation of IRE1 and ATF6 pathways is potentially responsible for a proinflammatory state
of the mucosa. Hypophosporylation of eIF2 alters the PERK pathway and the mucosal proteostasis. Regulators of the PERK/eIF2 pathway are
therefore promising candidates for UC control.
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associated with this treatment as worsening of UC after faecal
transplantation for Clostridium difficile has already been
described, 70 so patients should not be treated outside clinical
trials. A better understanding of the microbiota changes that
occur before and after FMT, its safety profile, a clarification of
the best route of administration and of whether antibiotic pre-
conditioning is necessary before FMT, and a perfection of the
methods used to administer it in order to make it more accept-
able by patients and their physicians is warranted.71 Four regis-
tered clinical trials (ClinicalTrials.gov NCT01545908,
NCT01560819, NCT01650038 and NCT01650038) are cur-
rently recruiting patients for clinical studies using FMT in the
treatment of UC or colonic CD. The results of these studies will
hopefully shed some light on the efficacy and underlying
mechanisms of FMT.

Helminth therapy
Epidemiological data suggest that the eradication of helminth in
the developed world led to a rise in allergic and autoimmune
diseases such as atopic dermatitis, multiple sclerosis, type 1 dia-
betes and IBD. Moreover, patients with immune-mediated disor-
ders and exposure to parasites tend to have fewer exacerbations
and improved symptoms.72 73 These data are further supported
by the positive impact of helminth infections in laboratory
models of colitis.74 Helminths or their soluble products, via
their interaction with the host, activate several innate and adap-
tive immune regulatory pathways that may suppress inflamma-
tion. Exposure to helminths may alter the gut microbiome
towards colonisation with more anti-inflammatory strains.75

They may modulate the function of dendritic cells.76

Helminthic exposure induces Th2 and regulatory T cell subsets
within the intestinal mucosa and mesenteric lymph nodes,
resulting in increased production of the anti-inflammatory cyto-
kines IL-4, IL-5, IL-10 and transforming growth factor β which
activate macrophages77 and block effector T cell proliferation
and secretion of proinflammatory cytokines IL-17 and inter-
feron γ.78

Clinical trials using helminths are being performed in
several allergic and autoinflammatory diseases, including IBD,
with encouraging results.79 In IBD, most of the trials use
Trichuris suis ova (TSO) due to its safety profile. T suis has
never been documented to cause human disease, multiply
within the host or transmit from one human host to another
(although this has been questioned).80 The very first open-
label trial of TSO in IBD was conducted in 2003 in a
restricted number of CD and UC patients.81 Four patients
with CD and three with UC were given one single dose of
2500 live TSO. Six of the seven patients achieved remission
(according to the IBD Quality of Life Index), with no adverse
effects. Only one of the completed TSO trials has been con-
ducted in patients with UC alone.82 This was a randomised
controlled double-blind trial in 54 patients with active UC
who received either 2500 TSO or placebo every 2 weeks for
3 months. After 12 weeks of treatment, 43.4% of the patients
given TSO improved compared with 16.7% of those given
placebo (p<0.04).82 No side effects were reported. A
24-week randomised double-blind placebo-controlled cross-
over study of TSO in patients with active UC is currently
recruiting patients. Its main goal is to further clarify and char-
acterise the mechanisms (mucus composition, change in
effector lymphocyte populations, bacterial composition) trig-
gered in response to the ingestion of TSO (ClinicalTrials.gov
NCT01433471).

Genetically modified organisms as drug delivery systems
Transgenic bacteria expressing interleukin-10
Advances in biotechnology have made possible the design of a
new generation of mucosal delivery systems. Among these are
genetically modified organisms such as bacterial or viral vector
systems.83 84 These have proved to be effective and safe, but
they raise concerns about survival and propagation in the
environment.

The food-grade bacterium Lactococcus lactis is a good
example of such a delivery vector for therapeutic proteins at
mucosal sites.85 86 IL-10 has been shown to be a key cytokine
in IBD, which led to the development of recombinant human
IL-10 for subcutaneous administration. Unfortunately, IL-10
treatment was not as effective as expected in clinical trials,
possibly because of the method of drug delivery.87 Using L
lactis-secreting murine IL-10 (mIL-10), investigators demon-
strated that it was possible to reduce inflammatory symptoms
in two murine colitis models.88 Furthermore, these investiga-
tors were able to modify this strain in order to make it bio-
logically contained, thus overcoming safety issues. In a phase
I trial, this approach was used to treat 10 patients with CD
and was shown to be safe and effective in reducing disease
activity.86

Bacteria enhancing expression of elafin
Elafin is a natural inhibitor of the proteases neutrophil elastase,
proteinase-3 and endogenous vascular elastase,89 enzymes pro-
duced by a variety of phagocytic inflammatory cells to degrade
ingested pathogens and help cell motility through the extracellu-
lar matrix. Elafin is secreted by cells local to the site of inflam-
mation in response to IL-1, TNFα, defensins, neutrophil
elastase and lipopolysaccharide.90 It is expressed in several
mucosal sites including the healthy intestinal epithelium.91

Besides its antiprotease properties, elafin has ‘defensin-like’ anti-
microbial activity and anti-inflammatory properties promoting
tissue remodelling and wound healing.92 93

Colonic tissues of patients with IBD have been reported to
have increased proteolytic activity94 and decreased elafin
mRNA expression.95 This suggests that the increase in elasto-
lytic activity in the colon of patients with IBD correlates with
a reduction in the expression of the endogenous protease
inhibitor. Furthermore, elafin has been shown to prevent
intestinal inflammation in mouse models of colitis, implying
that delivery of elafin to the site of inflammation could natur-
ally protect against IBD.96 However, to be delivered efficiently
and safely, elafin would have to be delivered locally and pro-
gressively released in small amounts at the site of inflamma-
tion. An ingenious way for doing this has recently been
developed.95 Investigators manipulated non-pathogenic lactic
acid bacteria (L lactis and L casei) normally present in dairy
food, and introduced the human Elafin gene so that they
would produce human elafin once at the site of inflammation.
They showed that oral treatment with Elafin-expressing food-
grade bacteria downregulated inflammation both in acute
and chronic mouse models of colonic inflammation.
Furthermore, in cultures of human intestinal epithelial cells
stimulated by an inflammatory milieu and treated with lactic
acid bacilli secreting Elafin, the inflamed epithelium was pro-
tected from increased intestinal permeability and from the
release of proinflammatory cytokines and chemokines. These
results suggest that there may be a role for the clinical appli-
cation of Elafin delivered by probiotic bacteria in treating
IBD.
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INNOVATIVE WAYS FOR DRUG DISCOVERY
Novel plant-derived drugs
Characterisation of new drug targets through clinical plant-
based research is an evolving field in many areas such as cancer
(eg, taxoids and camptothecins), infectious diseases, pain and
inflammation.97–99

Andrographis paniculata is a member of the plant family
Acanthaceae used in ayurvedic medicine and Chinese traditional
medicine. Its extract (HMPL-004) has potent anti-inflammatory
properties by inhibiting NF-κB activity, and its use is being
explored in various medical conditions. In experimental colitis,
HMPL-004 has been shown to affect T cell proliferation and
differentiation and Th1/Th17 responses.100 Its clinical use has
been already explored in phase II trials in UC. In a first trial,
patients with mild to moderate UC were randomised to receive
either 1200 mg per day HMPL-004 or 4500 mg mesalazine. By
week 8 the rates of clinical and endoscopic response and remis-
sion were similar in both treatment groups, suggesting that
HMPL-004 could be an alternative to mesalazine as an induc-
tion therapy. In a more recent trial, 1200 mg or 1800 mg daily
of A paniculata extract were compared with placebo for 8 weeks
for the induction of a clinical response in mild to moderate
UC.101 Although there was no difference between the lower
dose of the plant extract and placebo, 60% of patients receiving
A paniculata 1800 mg daily achieved a clinical response com-
pared with 40% receiving placebo (p=0.018). No difference in
the rate of adverse events between the groups was observed,
with the exception of rash which was higher in the group
treated with A paniculata extract.101

Computational drug repositioning (ex topiramate)
Drug repositioning, repurposing or reprofiling involves the
exploration of drugs that have already been approved for treat-
ment of other diseases. It has the inherent advantages of being a
less expensive and time-consuming process for drug develop-
ment and is a strategy that is therefore becoming increasingly
popular.102 Drug repositioning normally involves computational
approaches, where public gene expression signatures known to
be associated with a disease are screened against libraries of
drugs with biological targets of interest.103 Topiramate, an antie-
pileptic drug, is an example of such drug repositioning in
IBD.104 Using a computational approach where gene expression
signatures of IBD derived from public microarray data were
evaluated and run against a compendium of gene expression sig-
natures of 164 drugs, Dudley et al found that topiramate pre-
sented a high therapeutic score prediction for use in IBD. Based
on this finding, the authors then pursued a set of in vivo studies
using the anticonvulsant drug in mice models of trinitrobenzene
sulfonic acid (TNBS) colitis, demonstrating a reduction in clin-
ical symptoms and in gross and microscopic pathological inflam-
mation and therefore corroborating the results found in
silico.104 Further clinical investigation of the use of topiramate
for treating IBD in human subjects could be beneficial. It is
likely that, with current in silico technologies and with the
increasingly availability of public databases on the structures and
biological activities of drugs, new opportunities for other drug
repurposing in IBD will emerge.

Nanotechnologies
Nanomedicine is an emerging discipline that brings together
nanotechnology and medicine. It refers to the utilisation of mate-
rials and devices at the nanometer scale in disease diagnosis,
treatment and prevention, and it has the potential to turn

molecular discoveries arising from systems biology into real bene-
fits for patients.105 106 Nanomedicine will theoretically allow the
accurate delivery of drugs to the sites of inflammation, therefore
targeting their action and minimising their side effects.107

An example of this kind of nanotherapy is gene silencing
via orally delivered small interfering RNAs (siRNAs). Using an oral
nanoparticle capable of localising and delivering an siRNA directed
against TNFα to sites of intestinal inflammation, investigators
effectively decreased the levels of TNFα mRNA levels in a dextran
sulfate sodium (DSS)-induced mouse model of UC.108 Another
illustration of the potential of these therapies includes the nanode-
livery of IL-10-producing plasmid to the inflamed mucosa of
IBD.109 In a TNBS murine model of intestinal inflammation, an
oral system of nanoparticles-in-microsphere was formulated with
murine IL-10-expressing plasmid DNA. Upon oral administration,
IL-10 expression was enhanced in the large intestine leading to the
suppression of proinflammatory cytokines.109

Although nanomedicine is still in its first steps, the results of
these very preliminary studies provide evidence and potential
utility for oral gene therapy in IBD.107

FUTURE AVENUES FOR TRANSLATIONAL RESEARCH
There are many clinical and epidemiological questions related
to disease development and/or clinical evolution that remain to
be answered.110 Yet, understanding some of the commonly
observed clinical features of UC, such as the protective effect of
tobacco or the mild phenotype presented by patients who have
also been diagnosed with primary sclerosing cholangitis (PSC),
could potentially improve our knowledge of the pathophysi-
ology of the disease and lead to new avenues of research.

Proximal extension of disease
In contrast to CD where disease location is fairly stable, UC is a
dynamic disease with the extent of colorectal inflammation
changing over time in up to 50% of patients.13 Proximal exten-
sion of colorectal inflammation suggests a generalised suscepti-
bility of the colonic mucosa to disease trigger factors. As
discussed above, recent data show that the unaffected mucosa of
patients with UC displays an inappropriate unfolded protein
response compared with controls.52 Additionally, abnormal
microRNA expression profiles have been demonstrated in the
normal mucosa of patients with UC.111 These results show that,
even in the normal appearing/non-inflamed mucosa of patients
with UC, there are molecular differences harbouring a dormant
inflammatory process which could have a crucial role interacting
with environmental factors or other triggers of inflammation.
The prospective identification of biological markers in the
normal-appearing mucosa of patients that ultimately progress to
more extensive colitis may lead to the development of new diag-
nostic tools to identify patients at risk of disease extension who
could benefit from more aggressive therapeutic approaches.

PSC-UC as a unique phenotype
Patients with PSC-IBD typically have mildly symptomatic or
even asymptomatic extensive colitis with prolonged remissions
and a quiescent course of their colonic disease.112 113

Furthermore, recent data suggest that there is an inverse rela-
tionship between the severity of the liver disease and of the
UC,114–117 suggesting an intriguing cross-talk between the liver
and the gut.

It has been shown that producing experimental hepatitis in
mice models of colitis protects them from developing colitis.
This is mediated by the influx of invariant natural killer T
(iNKT) cells from the liver to the gut and mesenteric lymph
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nodes where they have anti-inflammatory functions and locally
enhance the expression of IL-10.118 Confirmation of these
results in humans could pave the way for new cell therapeutic
strategies using NKT cells in IBD.

Faecal secondary bile acid (BA) rates are significantly lower in
active IBD, possibly due to dysbiosis with a decrease in bacteria
bearing bile salt hydrolase activities.119 Secondary BAs have
anti-inflammatory properties due to their activation of G
protein-coupled specific membrane receptor TGR5, which inhi-
bits the secretion of TNFα, IL-1β and IL-6 in macrophages.119

PSC is characterised by defective hepatic BA excretion that
results in systemic BA accumulation as the disease progresses.
This results in the activation of anticholestatic responses to
provide alternative excretory routes and thus prevent accumula-
tion of toxic components.120 At the intestinal level, the ileal
expression of the apical bile salt transporter that permits intra-
cellular absorption of BA is downregulated during obstructive
cholestasis.121 122 This could hypothetically lead to a relative
increase of BAs entering the proximal colon in patients with
PSC-UC where they would be converted from primary into sec-
ondary BAs.

BA homeostasis is tightly regulated by the activation of
Farnesoid X Receptor (FXR) that is expressed at high levels in
the liver and intestine.123 Recently, the BA-FXR axis has been
implicated in intestinal barrier function.124 125 Intestinal inflam-
mation decreases FXR expression in a colitis mouse model and
FXR knockout mice have been shown to be more susceptible to
intestinal inflammation.126 127 FXR activation has been shown
to protect against intestinal inflammation in mice, possibly by
counterregulating inflammatory cytokine expression in immune
cells.128 129 FXR agonists may therefore be an interesting
approach for treating UC.

Why is smoking protective against UC?
Smoking is the most robust environmental association with UC.
UC is predominantly a disease of non-smokers and former
smokers.130–132 On the other hand, resumption of smoking has
been shown to induce remission, even in medically refractory
disease.133 134

Many mechanisms have been proposed to explain the influ-
ence of smoking on IBD and its opposite effects in UC and CD.
Smoking may have a different effect on the colon than on the
small bowel; it might produce alterations in gut permeability
and motility, in microcirculation and blood flow, and in the
mucus composition. Nicotine produces changes in cytokine
levels and modifies eicosanoid-mediated inflammation, produc-
tion of oxygen-free radicals and the release of endogenous glu-
cocorticoids.131 Furthermore, smoking has been shown to
induce an ER stress response by activating the PERK/eIF2 axis,
a mechanism that could explain the protective role of
tobacco.52 135

There is recent evidence suggesting that cigarette smoke
exposure protects mice from experimental colitis through the
action of iNKT cells. Using an innovative inhalation exposure
system (the InExpose exposure system; Scireq) that more accur-
ately reproduces human smoking habits, investigators first
showed that smoking exposure selectively improved
DSS-induced colitis (but not indomethacin-induced ileitis) in
wild-type mice leading to a significant decrease in colonic TNF,
IFNγ and IL-22 mRNA expression together with an increased
expression of IL-10 mRNA and a marked recruitment of
iNKT.136 Furthermore, using two different strains of
NKT-deficient mice, the same immunoregulation induced by
smoking exposure was no longer observed. This demonstrated

that (similar to PSC), iNKT cells are pivotal in the regulation of
colonic inflammation and that targeting these cells may offer
therapeutic benefits in UC.

What makes the appendix (or rather its absence) so special
in UC?
Surgical removal of the appendix is negatively associated with
the development of UC, especially if performed at a young
age.137 Indeed, appendicectomy has already been suggested as a
valid therapeutic strategy.138 139

It has been shown that the ratio between CD4 and CD8 T
cells and the proportion of CD4CD69 (early activation antigen)
T cells are significantly increased in the appendix of patients
with UC.140 Furthermore, in a T cell receptor-α chain knockout
mouse model of colitis, appendicectomy performed at a
young age was protective against the development of colitis.141

A link has been observed between acute appendicitis and an
imbalance between bacteria with inflammatory (Fusobacterium
nucleatum/necrophorum) and anti-inflammatory properties
(Faecalibacterium prausnitzii),142 suggesting local appendicular
dysbiosis as a potential explanation.143 Together, these observa-
tions imply that the appendix is an immunologically active
organ involved in antigen sampling and in the regulation of the
host-microbiome response. A better understanding of the path-
ways involved in the protection that appendicectomy confers
against UC development may be helpful. A randomised multi-
centre trial designed to prospectively study the effect of laparo-
scopic appendicectomy on the clinical course of UC (the
ACCURE trial) is currently ongoing and is likely to shed some
light on this topic.

Is it in the food?
Changes in diet are a good mirror of the profound alterations in
lifestyle that developing and industrialising societies face,
leading many to look at diet as one of the environmental factors
involved in IBD. In a recent French study, 67 581women were
surveyed with self-administered questionnaires and their dietary
habits were recorded at baseline and requestioned every
24 months. Among the participants, 77 incident IBD cases were
diagnosed. Investigators found that a high total protein intake,
specifically animal protein (meat or fish), was associated with a
significantly increased risk of IBD.144

The mechanism explaining why animal proteins and/or fat
would increase susceptibility to IBD is not clear, but it is likely
that it could promote changes in bile salt composition and
microbiome which in turn could be relevant to the initiation
and maintenance of inflammation in genetically susceptible indi-
viduals.144 Investigators have shown that offering a high-fat diet
and heme supplementation (normally present in high quantities
in red meat) to a UC-like mouse model resulted in increased
severity of colitis compared with mice fed with chow.145 In two
mouse models of colitis, other investigators showed that intro-
ducing a diversified diet (in an attempt to replicate a more
diverse and westernised type of diet) compared with a monot-
onous diet increased the severity of colitis. This was accompan-
ied by microbiome changes—namely, a reduction in bacteria
diversity.146 Devkota et al147 have shown that offering a diet
rich in saturated fat to mice resulted in alterations in the pool of
BAs which, in turn, stimulated the growth of sulfate-reducing
bacteria that have been implicated in IBD. Further studies clari-
fying the impact of nutrients in the development and course of
IBD may offer new insights into the early phases of disease
development.
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CONCLUSIONS
UC is a serious medical condition with its own genetic, patho-
genic and therapeutic identity. Despite all the recent advances,
and even with our best available therapies, many patients
remain symptomatic and present with a damaged colon with
ulcerations, highlighting the need for new therapies. Many of
the current strategies being developed in UC such as small mole-
cules and new biological therapies focus on targeting the block-
ade or enhancement of soluble and cellular proteins and
associated signalling mechanisms. However, thinking outside the
box, looking at other components of UC pathophysiology and
improving our understanding of some distinctive clinical and
epidemiological features of disease may lead to the development
of novel approaches and therapies.

While anticipating the arrival of novel and more effective
medical therapy, we need to optimise the ones we currently
have. This will involve being more stringent with our endpoints,
introducing sufficiently potent drug regimens, optimising drug
levels, intervening early before damage occurs and aiming at the
sustained suppression of inflammation, with the ultimate goal of
changing the course of disease.
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