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ABSTRACT
The recent increase in our knowledge of human gut
microbiota has changed our view on antibiotics.
Antibiotics are, indeed, no longer considered only
beneficial, but also potentially harmful drugs, as their
abuse appears to play a role in the pathogenesis of
several disorders associated with microbiota impairment
(eg, Clostridium difficile infection or metabolic disorders).
Both drug-related factors (such as antibiotic class, timing
of exposure or route of administration) and host-related
factors appear to influence the alterations of human gut
microbiota produced by antibiotics. Nevertheless,
antibiotics are nowadays considered a reliable therapy for
some non-communicable disorders, including IBS or
hepatic encephalopathy. Moreover, some antibiotics can
also act positively on gut microbiota, providing a so-called
‘eubiotic’ effect, by increasing abundance of beneficial
bacteria. Therefore, antibiotics appear to change, for
better or worse, the nature of several disorders, including
IBS, IBD, metabolic disorders or liver disease. This reviews
aims to address the potential of antibiotics in the
development of major non-communicable disorders
associated with the alteration of gut microbiota and on
newly discovered therapeutic avenues of antibiotics
beyond the cure of infectious diseases.

INTRODUCTION: THE ANTIBIOTIC REVOLUTION
AND THE MICROBIOTA REVOLUTION
The discovery of penicillin by Alexander Fleming
in 1928 represents a breakthrough in the history of
medicine as it catalysed the development of antibio-
tics, beginning the so-called ‘antibiotic revolution’.1

By conferring to mankind resilience to the majority
of bacterial assaults, antibiotics altered the natural
history of most infectious diseases and saved mil-
lions of lives. Their exploitation transformed not
only medicine, but also pharmacology, healthcare
industry and the whole human everyday life.
Several decades after, another paradigm shift

changed again our relationship with bugs. Although
Metchnikoff already hypothesised a role for our
microbiota in health and disease at the beginning
of the 20th century,2 the undetectability of most
components of gut microbiota with available diag-
nostic technique impeded the growth of interest in
this field. The development of ‘omics’ technologies,
based on microbial genome sequencing, allowed
the in-depth assessment of gut microbiota com-
position and functions,3 laying the groundwork
to a new approach to microbial components of
our ody, recently addressed as ‘microbiota
revolution’.4

After this groundbreaking improvement of tech-
nology, two cornerstones of antibiotic therapy

started to be undermined. First, antibiotics are no
longer considered only beneficial, but also poten-
tially harmful agents, as increasing evidence sup-
ports the correlation between their overuse and the
development of many disorders associated with the
alteration of gut microbiota;5 moreover, antibiotics
overexposure may also lead to the development of
genotypic antibiotic resistance in the resident
microbiota and to its potential transfer to patho-
genic bacteria;6 additionally, antibiotics were
indeed shown to enrich phage-encoded genes,
which transfer resistance to both the administered
drug and also to unrelated antibiotics, as well as to
promote the interplay between phages and bacteria,
enhancing, consequently, resistance gene
exchange.7

The second undermined certainty about antibio-
tics is that the healing of bacterial infections is not
considered anymore as their only therapeutic
purpose as they appear to be a reliable treatment
for several non-communicable disorders (eg,
hepatic encephalopathy (HE) or IBS).
This reviews aims to address the potential of

antibiotics in the manipulation of gut microbiota
and related clinical consequences, focusing both on
GI and extraintestinal disorders associated with
microbiota impairment driven by antibiotics, and
on newly discovered therapeutic avenues of antibio-
tics beyond the cure of infectious diseases.

Key messages

▸ Antibiotics are no longer considered only
beneficial, but also potentially harmful agents,
as their overuse has been linked to microbiota
impairment and related disorders.

▸ Antibiotics appear to be a reliable treatment
not only for infectious disorders, but also for
several non-communicable ones.

▸ Antibiotic characteristics that can influence
their ‘evil’ or ‘good’ behaviour towards gut
microbiota include their class,
pharmacokinetics, pharmacodynamics and
range of action, as well as their dosage,
duration and administration route.

▸ Host-related factors that are known to influence
the size and quality of antibiotic damage to
balanced microbiota include age, lifestyle and
microbiota composition.

▸ Some antibiotics can also act positively on gut
microbiota, providing a so-called ‘eubiotic’
effect, by increasing abundance of beneficial
bacteria.
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EFFECTS OF ANTIBIOTICS ON GUT MICROBIOTA
COMPOSITION
Human gut microbiota in health
Bacteria are the most represented members of the human gut
microbiota, with >1000 species, most of which are anaerobes,
accounting for an absolute number higher than 1014.8 Although
increasing evidence on gut virome9 and gut mycome10 is
appearing, most of the available data on our microbiota still
concern bacteria. The majority (>90%) of bacteria identified in
human stools and/or intestinal mucosa belong to the
Bacteroidetes and Firmicutes phyla. The remaining bacteria are
included within four major phyla (Actinobacteria, Fusobacteria,
Proteobacteria and Verrucomicrobia) and other minor phyla.11

Bacteria are the most relevant contributors in the fulfilment of
microbiota-dependent functions, including the regulation of
several metabolic pathways, the barrier action against pathogens,
and the growth and consolidation of immune system.12

As 60–80% of intestinal bacteria are not identifiable by
culture, only the transition to culture-independent technologies,
including high-throughput sequencing and other DNA sequen-
cing techniques, lets us discover composition and functions of
healthy gut bacterial microbiota.13

Consequently, this makeover allowed us to identify the
‘microbiota fingerprint’ of several disorders, understand the
potential role of gut microbiota in their development and learn
how microbiota deteriorates under particular conditions, includ-
ing dietary habits, diseases or drugs.8

The effect of antibiotics on gut microbiota composition
As most of the antibiotics available on the market have a broad
spectrum of action, they impact not only on harmful bacteria,
but also on healthy ones. The impairment of gut microbiota is

the main, but not the only one, effect of antibiotics on our
intestine: other mechanisms of action include a direct harmful
effect of antibiotics on GI epithelia and the spread of
antibiotic-resistant microorganisms.14

Short-term alterations of healthy gut microbiota due to anti-
biotics have been extensively investigated in the past years.15 On
the contrary, only a few recent studies have addressed long-
lasting changes of gut microbiota after antibiotic treatment.
Both drug-related factors and host-related factors affect the
impact of antibiotics on human gut microbiota.

Drug-related factors
Antibiotic characteristics that can influence this relationship
include their class, pharmacokinetics, pharmacodynamics and
range of action, as well as their dosage, duration and administra-
tion route.16 Different antibiotic classes provide different pat-
terns of microbiota alteration because of their different spectrum
and bacterial target (table 1). Lincosamides, mainly clindamycin,
are broad-spectrum antibiotics with main biliary excretion (and,
consequently, high concentrations in stools), which are particu-
larly active against anaerobes. This feature makes clindamycin
one of the strongest antibiotic risk factors for the development of
Clostridium difficile infection, with an OR of 2.86, as accounted

Table 1 Overview on the effects of different antibiotics on gut
microbiota, according to their classes and excretion

Antibiotic class Antibiotic excretion Effects on gut microbiota

Lincosamides
Clindamycin

Main biliary excretion ↓Gram-positive aerobes and
anaerobes17

↑Resistance genes18

↓ Bacteroides diversity18

Macrolides
Clarithromycin
Erythromycin

Biliary excretion ↓Total bacterial diversity0

↓Actinobacteria (including
Bifidobacteria)19 20

↓Firmicutes (mainly
Lactobacilli)20

↑Bacteroidetes20

↑Proteobacteria20

↓Firmicutes26

↓Actinobacteria26

↑Proteobacteria26

β-Lactams
Penicillin V
Amoxicillin
Ampicillin/
sulbactam
Cephalosporins

Main urinary excretion
Partial (33–67%) biliary
excretion24

No relevant changes20

↓Firmicutes26

↓Actinobacteria26

↑Proteobacteria26

No relevant changes20 21

↓Total bacterial richness23

↓Firmicutes23

↑Bacteroidetes23

↑Proteobacteria23

↓Firmicutes26

↓Actinobacteria26

↑Proteobacteria26

↓Total bacterial richness23

↓Firmicutes23

↑Bacteroidetes23

↑Proteobacteria23

Fluoroquinolones
Ciprofloxacin
Levofloxacin

Partial biliary excretion ↓Bacterial diversity27

↓Gram-negative facultative
anaerobes25

↑Gram-positive aerobes26

↓Gram-negative facultative
anaerobes25

↓Gram-positive anaerobes25

Glycopeptides
Vancomycin*

↓Total bacterial diversity0

↓Firmicutes20

↑Proteobacteria20

*Oral administration (vancomycin is not adsorbed when administered orally).

Key messages

▸ Antibiotics appear to change, for better or worse, the
natural history of several disorders, including IBD, IBS,
metabolic disorders or liver disease.

▸ Use of antibiotics has been suggested to play a direct role in
the development of IBD by leading to dysbiosis and reduced
bacterial diversity. Another theory, instead, suggests
antibiotics are only surrogate markers of other risk factors
for IBD such as GI infections.

▸ Although systemic antibiotics appear to increase the risk of
IBS development, a large body of evidence identified poorly
absorbable antibiotics (mainly rifaximin) as a reliable
treatment for IBS and hepatic encephalopathy.

▸ According to the administration of high or low dosages,
respectively, antibiotics were shown to be able to drive either to
underweight, through deep demolition of gut microbiota, or
overweight, by development of selective dysbiosis.

▸ Early life appears to be a critical period for the maturation of
metabolic functions, and antibiotic-dependent impairment of
microbiota during this period, even if transient, could have
profound effects on weight gain, although recent studies
provided conflicting results.

▸ A wiser use of antibiotics in clinical practice, as well as a
boost in this field of research, is advocated for a better
management of patients with disorders related to the
impairment of gut microbiota.
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in a recent meta-analysis.17 Clindamycin decreased
Gram-positive aerobes and anaerobes, when given for 10 days to
healthy individuals, with long-lasting impairment of microbiota
composition.18 Long-term disturbances of microbiota compos-
ition, mainly decrease in the clonal diversity of Bacteroides, and
persistent increase in levels of specific resistance genes, were also
observed after short clindamycin exposure.19

As well as lincosamides, macrolides are protein synthesis inhi-
bitors with biliary excretion, which act mainly against
Gram-positive bacteria. Indeed, clarithromycin was accounted
for the long-lasting decrease of Actinobacteria (which are natur-
ally resistant to metronidazole) observed in Helicobacter pylori-
positive patients exposed to standard first-line triple therapy.20

More recently, in a large cohort of Finnish children, macro-
lides were shown to induce long-term alterations of microbiota,
particularly reduction of Actinobacteria (mainly Bifidobacteria),
Firmicutes (mainly Lactobacilli) and total bacterial diversity, as
well as an increase of relative abundance of Bacteroidetes and
Proteobacteria.21 In the same cohort, interestingly, penicillins—
in particular, penicillin V and amoxicillin—were not associated
with relevant changes of microbiota. More recent data con-
firmed the weak impact of amoxicillin on human gut micro-
biota.22 The powerlessness of amoxicillin in modulating gut
microbiota may explain its ineffectiveness in providing nutri-
tional recovery from severe malnutrition, which was recently
observed in a large cohort of African children.23 However, a
β-lactam combination, including ampicillin and cephalosporins,
led to a decrease in Firmicutes and an increase in Bacteroidetes
and Proteobacteria (particularly Enterobacteriaceae, which are
commonly resistant to β-lactam antibiotics) and reduced micro-
bial richness.24 This difference in results may be explained by
the higher concentration in faeces of cephalosporins than
amoxicillin.25 Interesting data come from the perinatal adminis-
tration of β-lactam antibiotics, with or without other antibiotic
classes. Intrapartum antibiotic prophylaxis with penicillin, ampi-
cillin or ampicillin plus erythromycin led to decreased levels of
short-chain fatty acids (SCFAs), Firmicutes and Actinobacteria,
and to increase in Proteobacteria.26

Also, some fluoroquinolones, including ciprofloxacin and
moxifloxacin, are partially excreted through the biliary system,
and about one-third of their oral intake can be found in faeces.
Ciprofloxacin acts against Gram-negative facultative anaerobes,
whereas levofloxacin also decreases the number of
Gram-positive anaerobes, including Bifidobacteria.27 Recently,
ciprofloxacin was shown to provide long-term changes—mainly,
increasing Gram-positive aerobes—to the microbiota of healthy
individuals,28 as well as to reduce bacterial diversity.29 In
another series, fluoroquinolones increased Bacteroidetes and
Proteobacteria, without modifying Firmicutes.24

The ability of antibiotics to manipulate microbiota can also
depend on their route of administration. Vancomycin has shown to
be a powerful modulator of microbiota when administered orally
as it is not absorbed from the gut. First data come from mouse
models, in which vancomycin, together with bacitracin, decreased
Bacteroidetes, Firmicutes and total microbiota richness.29

In a small randomised-controlled trial of obese males with
metabolic syndrome, oral vancomycin reduced bacterial diversity
and Firmicutes, increasing Proteobacteria.22 Moreover, oral route
of administration of antibiotics was recently demonstrated to
stimulate the development of antibiotic resistance among healthy
microbiota members much more than the intravenous one.30

Nevertheless, antibiotics can also act positively on gut micro-
biota, providing a so-called ‘eubiotic’ effect.31 Some antibiotics
were, indeed, demonstrated to stimulate the growth of beneficial

bacteria. Nitrofurantoin, a broad-spectrum antibiotic with activ-
ity for both Gram-negative and Gram-positive bacteria, provided
a temporary increase in Actinobacteria, and mainly in
Bifidobacteria, when administered to 61 patients for uncompli-
cated urinary tract infections.32 In another small sample of out-
patients with urinary tract infections, nitrofurantoin treatment
increased also Fecalibacterium genus.33

Increasing evidence supports the ‘eubiotic’ properties of rifax-
imin, a poorly absorbable antibiotic with broad-spectrum cover-
age (aerobes, anaerobes, Gram-positive and Gram-negative
bacteria). In a small trial of 15 patients with IBS, rifaximin
increased bacterial diversity, the Firmicutes/Bacteroidetes ratio
and the abundance of Faecalibacterium prausnitzii, a butyrate
producer with strong anti-inflammatory properties, which is
reduced in IBD.34 In another report of 19 patients with differ-
ent GI and liver disorders (IBD, IBS, diverticular disease, HE),
rifaximin increased the abundance of Lactobacilli, with no
effects on bacterial diversity.35

Finally, early life treatment with vancomycin was able to
prevent the onset of diabetes in non-obese diabetic mice by
increasing levels of Akkermansia muciniphila,36 a mucin-
degrading bacterium that can be found in the intestinal mucus
layer, whose abundance is inversely correlated with body weight
and type 2 diabetes (T2D) both in mice and humans.37 38

Interestingly, levels of A muciniphila increased also in two critic-
ally ill patients after treatment with multiple antibiotics.39

Host-related factors
Also, host-related factors are known to influence the size and
quality of antibiotic damage to healthy bacteria, including age,
lifestyle and microbiota composition.

Concerning data come from paediatric studies as infant
microbiota is still unconsolidated, so reacts worse to injuries.
Antibiotics appear to modify human gut microbiota starting yet
from the very early life. Data from several studies support that
broad-spectrum antibiotics produce long-lasting effects on
microbiota of newborns and infants, including increase in
Proteobacteria, and particularly Enterobacteriaceae, and
decrease in abundance and/or diversity of Actinobacteria, espe-
cially Bifidobacteriaceae and Bifidobacteria.40–42 Higher abun-
dance of Enterobacteria was also found in a large cohort of
infants treated with antibiotics compared with untreated ones.43

Similar results come from data on preterm infants.44

A body of evidence shows that antibiotics can impair infant
microbiota even before birth. In a large Canadian cohort, infants
whose mothers received intrapartum antibiotic prophylaxis dis-
played a long-lasting dysbiosis, in particular an increase in
Enterococci and Clostridia and lower proportion of Bacteroides
than others;45 under-representation of Bacteroides was found
also in infants from a European cohort, whose mothers received
antibiotics perinatally and/or during breast feeding.43

In summary, available data agree on quite homogeneous
alterations of infant microbiota after antibiotic treatment; this is
easily explainable as infant microbiota is still immature.

By contrast, the initial composition of gut microbiota appears
to influence its response to antibiotics in adults; in a recent
study of 18 young healthy volunteers, a 7-day regimen of cef-
prozil led to similar qualitative alterations of microbiota in the
majority of subjects, but to totally different findings in a subset
of individuals with predominant Bacteroides enterotype and
lower microbial diversity.46

Finally, some evidence shows that microbiota response to anti-
biotics may be also influenced by host lifestyle; in a large cohort
of elders, the microbiota of subjects living in long-term care
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residences was more destabilised by antibiotic therapies than
that of community-based ones.47

Recently, antibiotic effects on gut microbiota have been evalu-
ated through a multi-omic approach. Microbial 16S rDNA and
16S rRNA, metagenome, metatranscriptome, metametabolome
and metaproteome of a patient being exposed to cefazolin for
14 days were evaluated; changes in microbiota composition
were accompanied by the reduction of the expression of several
proteins essential for the microbial activity, by the attenuation of
the microbiota metabolic status and by the decrease of host–
microbial interaction.48

A clinical model of antibiotic-driven dysbiosis: the case of
C difficile infection
C difficile infection (CDI) represents probably the most striking
clinical example of antibiotic-driven dysbiosis as it usually arises
as a complication of antibiotic therapy, especially in elder people.
In recent years, the prevalence of CDI has increased tremen-
dously, especially in Western countries,49 making it become the
leading cause of infectious diarrhoea among hospitalised patients,
and, consequently, an economic and healthcare burden.50

Overexposure to antibiotics, especially in elderly and fragile
patients, has strongly contributed to the development of such a
scenario. In a recent meta-analysis pooling >56 000 patients,
antibiotics were the highest risk factor for the development of
CDI (OR 6.18; 95% CI 3.80 to 10.04).51

Antibiotic exposure can promote the development of CDI
through several pathogenic pathways. First, antibiotic-dependent
alteration of healthy microbiota prevents its resistance towards
colonisation by C difficile.52 53 Subjects who developed CDI after
antibiotic therapy showed a depletion of their microbiota diver-
sity, together with qualitative microbial alterations, including a
decrease in families producing SCFAs, such as Lachnospiraceae
and Ruminococcaceae.54 55 Also, changes in the metabolic func-
tions of gut microbiota may promote the development of CDI; in
a mouse model, the antibiotic-dependent release of free sialic
acid by commensal microbiota promoted the colonisation.56

Moreover, as production of C difficile toxin is regulated through
quorum signalling,57 antibiotic-dependent depletion of other
microbiota members provides opportunity for C difficile to
spread and express its virulence factors.

Finally, growth of C difficile could be promoted also by an
‘evil’ interplay between microbiota, antibiotics and bile acids. In
health, some primary bile acids do not undergo ileal reuptake
and can be found in the large bowel; here, cholic acid is able to
promote growth of C difficile,58 while chenodeoxycholic acid,
and the secondary bile acids (lithocholic and deoxycholic acid)
derived from microbial-dependent dehydroxylation of primary
bile acids, counteract this effect by inhibiting the germination of
C difficile spores.59 60 Therefore, antibiotics may enhance the
growth of C difficile by depleting bacteria that dehydroxylate
bile acids, such as Clostridium scindens, which was shown to
have a protective role against CDI.60 61

The therapeutic corollary of the pathogenic role of antibiotics
in CDI is represented by faecal microbiota transplantation,
which was proven to be a highly effective treatment for recur-
rent CDI,62 63 and to restore the CDI-dependent microbiota
impairment.63 64

EFFECTS OF ANTIBIOTICS ON NON-COMMUNICABLE
DISORDERS
IBD
Gut microbiota of patients with IBD goes through several quali-
tative and quantitative alterations. Decrease in bacterial diversity

and higher bacterial instability have been described in patients
with IBD compared with healthy subjects.65 Most pronounced
changes in the gut bacteriome of patients with IBD include, at
phylum level, increase in Proteobacteria66–68 and decrease in
Firmicutes.66 Among Proteobacteria, increase in Enterobacteriaceae
family,66 and, in particular, in Escherichia coli adherent-invasive
strains,69 is the most notable.

Changes in Firmicutes include, beyond reduction of
Lactobacilli,70 depletion of SCFAs producers, as
Lachnospiraceae66 and Ruminococcaceae71 at family level, and
Eubacterium,70 Roseburia72 73 and Faecalibacterium,72 at genus
level; in particular, the decrease of F prausnitzii, an anti-
inflammatory and butyrate producer strict anaerobe, has been
repeatedly found both in patients with Crohn’s disease
(CD)74 75 and in patients with UC.75

Interesting data come also from the analysis of non-bacterial
members of microbiota, previously neglected. Altered fungal
diversity, increase of Basidiomycota/Ascomycota ratio and
Candida albicans abundance, together with reduction of
Saccharomyces cerevisiae abundance, have been reported in
patients with IBD.76 Also, the ‘gut virome’ is known to be
altered in subjects with IBD: increased richness of bacterio-
phages, with marked expansion of Caudovirales and specific
viral signature for patients with UC and CD, has been recently
described; interestingly, it was inversely correlated with
decreased bacterial diversity.77

Based on these findings, antibiotics have been suggested to
play a direct role in the development of IBD by leading to dys-
biosis and reduced bacterial diversity.78 A considerable body of
evidence supports this hypothesis. A recent meta-analysis of 11
observational studies and 7208 patients showed that antibiotic
exposure has a 1.57 OR for IBD overall (95% CI 1.27 to 1.94);
with a significant association for CD (OR 1.74, 95% CI 1.35 to
2.23), especially in children (OR 2.75, 95% CI 1.72 to 4.38),
but not for UC (OR 1.08, 95% CI 0.91 to 1.27); all antibiotics,
particularly metronidazole (OR 5.01, 95% CI 1.65 to 15.25)
and fluoroquinolones (OR 1.79, 95% CI 1.03 to 3.12), were
associated with IBD development, except to penicillin;79 these
results are in agreement with the weak dysbiotic behaviour of
penicillins.21–23

Another theory, instead, suggests antibiotics to be only surro-
gate markers of other risk factors for IBD as bacterial intestinal
infections have been identified as a risk factor for further initi-
ation of IBD, especially CD.80

In contrast, there are several therapeutic pathways through
which antibiotics can change positively the natural course of IBD,
including the reduction of luminal bacteria abundance and trans-
location, and the ‘eubiotic’ modulation of microbiota.81 Many
meta-analyses of randomised-controlled trials showed a significant
benefit of antibiotics over placebo in the induction of remission of
UC82–84 and CD,83 although they pooled together different anti-
biotic classes, making their findings difficult to be interpreted.

Antibiotics are, indeed, suggested by current european
crohn’s and colitis organisation (ECCO) guidelines for UC only
if infectious complications are suspected or ongoing and before
surgical interventions.85 ECCO-European Society for Paediatric
Gastroenterology Hepatology and Nutrition (ESPGHAN) guide-
lines for the management of paediatric IBD confirmed these
advices, without considering antibiotics as a reasonable treat-
ment for the management of uncomplicated paediatric UC.86

Also for CD, current ECCO guidelines do not recommend the
use of antibiotics for uncomplicated diseases, but only in the
case of sepsis, abdominal or perianal abscess, or bacterial over-
growth.87 Also, British Society of Gastroenterology (BSG)
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guidelines suggest the use of antibiotics mainly for secondary
complications in IBD; nevertheless, the use of antibiotics in
short-term treatment of colonic CD is taken into account for
patients with refractory disease or contraindications to other
therapeutic options supported by stronger evidence.88

IBS
Several lines of evidence support a pathogenic role for
impaired microbiota in IBS. First, a considerable rate of
patients (up to 30%) experience IBS symptoms after an
episode of acute gastroenteritis (the so-called ‘postinfectious
IBS’),89 especially if happened during early life,90 when micro-
biota is still consolidating. Then, small intestinal bacterial
overgrowth has been suggested to play a role in the develop-
ment of IBS symptoms,91 although the issue is still controver-
sial.92 Finally, the quite satisfactory success of therapeutic
modulators of microbiota, including dietary advices, antibiotics
and probiotics, represents an ex juvantibus support of this
hypothesis.93

Many studies, carried on through DNA sequencing technolo-
gies, showed that microbiota composition is altered in subjects
with IBS. An increase of Firmicutes/Bacteroidetes ratio was
described in patients with IBS compared with controls; in par-
ticular, a decrease in the abundance of Bifidobacteria,
Faecalibacteria and methanogenic bacteria was found.94

Moreover, pyrosequencing analysis identified two microbiota-
based subcategories of patients with IBS, including one without
abnormalities and another which displayed a decrease in bacter-
ial taxa belonging to Bacteroidetes and an increase in those
belonging to Firmicutes.95 Interestingly, a depletion of butyrate
producers, including Roseburia–Eubacterium rectale group, and
an increase in sulfate-reducing bacteria were identified in sub-
jects with constipation-type IBS (C-IBS).96

In another analysis of five groups, including patients with
postinfectious IBS, patients with or without IBS symptoms
6 months after gastroenteritis, patients with diarrhoea-type IBS
(IBS-D) and healthy controls, authors identified a microbiota
pattern of 27 genus-like groups of bacteria, which grouped sig-
nificantly patient groups and controls; in particular, patients dis-
played a 12-fold increase of Bacteroidetes, and healthy
individuals showed a 35-fold increase in uncultured Clostridia;
interestingly, microbiota of patients with postinfectious IBS was
similar to that of patients with IBS-D, suggesting a shared patho-
physiological pathway.97

IPatients with BS exhibit also deep changes in their metabolite
profiles, as observed in children with IBS, who showed an
increase in proteolysis, incomplete anaerobic fermentation and
alterations in the production of methane.98 A meta-analysis of
case–control studies determining microbiota profiles in patients
with IBS showed that IBS-associated species and specific micro-
biota alterations were influenced by geographical location, being
different between Chinese and non-Chinese subjects.99

The alteration of gut microbiota has been postulated to con-
tribute to IBS pathogenesis through several pathways, including
the impairment of gut–brain axis, of the intestinal barrier and of
neuro-enteric physiology.100

Antibiotics are able to interfere with the natural history of IBS
with a two-faced behaviour, as showed by various lines of evi-
dence. Data from large cohort and case–control studies suggest
antibiotics to be a risk factor for the development of IBS and
other functional GI disorders (FGIDs), probably by leading to
dysbiosis in the host.

In a large retrospective study of nearly 26 000 patients,
exposure to macrolides or tetracyclines were significant

predictors of developing IBS, whereas treatment with cephalos-
porins or penicillins did not.101

In a prospective case–control study, antibiotic therapy for
extraintestinal infections was significantly associated with FGIDs
(OR 1.90; 95% CI 1.21 to 2.98) and IBS alone (OR 2.30; CI
1.22 to 4.33).102

Although systemic antibiotics appear to increase the risk of
IBS development, a large body of evidence identified poorly
absorbable antibiotics as a reliable treatment for IBS. At first,
neomycin was proven to be effective in improving overall symp-
toms of IBS together with the normalisation of lactulose breath
test, as shown in a large randomised placebo-controlled trial.103

Nevertheless, neomycin lost its early attractiveness because of
the rapid development of antimicrobial resistance. Absorbable
antibiotics, including doxycycline or ampicillin/clavulanate, did
not exert reliable results.104 Among non-adsorbable antibiotics,
rifaximin was the most studied in patients with IBS, and also the
one that gave most reliable results, as observed in several rando-
mised, placebo-controlled trials. Rifaximin was significantly
more effective than placebo in improving global IBS symptoms
when given at the dosage of 400 mg twice daily for 10 days.105

Furthermore, rifaximin confirmed to provide sustained improve-
ment of overall IBS symptoms, which lasted for up to 10 weeks
after the discontinuation of treatment, at a slightly higher
dosage (400 mg thrice daily for 10 days).106

However, the strongest evidence about the effectiveness of
rifaximin in relieving IBS symptoms comes from two identical
randomised double-blind, placebo-controlled trials (TARGET 1
and TARGET 2, respectively). Overall, 1260 patients with IBS
without constipation were randomised to placebo or rifaximin
at the dosage of 550 mg thrice daily for 2 weeks; rifaximin was
significantly more effective than placebo in providing a signifi-
cant relief of overall IBS symptoms, abdominal pain, bloating
and loose or watery stools during the first four weeks after the
end of treatment, and a sustained improvement during the first
two months and during all 10 weeks of follow-up, in both
trials.107 This large body of evidence led rifaximin to be
approved by US Food and Drug Administration for the treat-
ment of IBS-D in 2015.108 Rifaximin and neomycin were inves-
tigated also in patients with C-IBS: in a randomised
placebo-controlled trial, patients with C-IBS and methane pro-
ducing were randomised to undergo neomycin with placebo or
rifaximin for 14 days; combination therapy achieved better
results than neomycin alone, improving significantly constipa-
tion, bloating and straining, together with decrease in breath
methane.109

Obesity-related disorders
Gut microbiota is known to play a major role in collecting,
storing and spending diet-derived energy. As demonstrated by
both animal models110 and human studies,111 the microbiota
‘fingerprint’ of obesity is represented by an increase in relative
abundance of Firmicutes and decrease in that of Bacteroidetes,
and the Bacteroidetes/Firmicutes ratio has been addressed as the
‘adiposity index’, although with some controversies.112

Furthermore, a decreased beta diversity, together with a reduc-
tion of anti-inflammatory bacteria (such as F prausnitzii) and an
increase in pro-inflammatory bacteria (including Ruminococcus
gnavus) were observed in obese patients.113 Beyond obesity, gut
microbiota is altered in other disorders associated with meta-
bolic imbalance; this depends, at least in part, by the direct
influence of high-fat diet on gut microbiota, independently of
obesity.114
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Recently, two metagenome-wide association studies, respect-
ively from China115 and Europe,116 addressed microbiota com-
position in patients with T2D: despite population-specific
changes, several common findings, including a decrease in butyr-
ate producers (including Roseburia intestinalis and F prausnit-
zii), an increase in Proteobacteria and in microbial genes
responsible for oxidative stress, were identified.117

Moreover, a growing body of evidence suggests that A muci-
niphila levels are inversely associated with obesity and T2D
both in mice and in humans.37 38

Recently, a microbiota-dependent therapeutic pathway of the
antidiabetic drug metformin has been demonstrated as it has
been shown to increase the production of SCFAs in patients
with T2D.118 In particular, in high-fat diet-fed mice, the
metformin-dependent improvement of glycaemic profile appears
to be mediated by the increase in A muciniphila levels.119

Manipulation of microbiota through antibiotics has been used
to modulate weight, also ahead of its time. Farm animals were
usually treated with low dosage of antibiotics, to promote their
growth, since the 1940s.120 Several studies, performed both in
animal models and in humans, show that antibiotic treatment
have a profound influence on recipients’ weight.

In mouse models, effects of antibiotic treatment towards
weight and microbiota appear to depend on several factors,
including drug dosage and timing of antibiotic exposure.121

According to the administration of high or low dosages, respect-
ively, antibiotics were shown to be able to drive either to under-
weight, through deep demolition of gut microbiota,122 or
overweight, by development of selective dysbiosis.123 124

Beyond total body weight increase, low-dosage antibiotics
provide also an increase in adiposity and insulin resistance, alter-
ation of liver metabolism and composition of microbiota.123 125

Nonetheless, both in ob/ob and diet-induced obese mice with
insulin resistance, antibiotics showed, respectively, antidiabetic
effects (improvement in fasting glycaemia, glucose intolerance
and insulin signalling, and increase in glucagon-like peptide
1),29 126 127 and decrease of metabolic endotoxemia.128

These effects appear to be independent of antibiotic
classes,124 but also to be deeply influenced by timing of adminis-
tration: in the study from Cox et al, newborn mice undergoing
antibiotic treatment experienced higher weight gain than those
receiving antibiotics at weaning and controls. Furthermore,
these long-lasting modifications were provided by short-term
antibiotic regimens. Early life, therefore, appears to be a critical
period for the maturation of metabolic functions, and antibiotic-
dependent impairment of microbiota during this period, even if
transient, can have profound effects on weight gain.124

Data provided by these elegant mouse models are in agree-
ment with those coming from their human counterpart. A body
of large population-based studies, indeed, addressed that early
antibiotic exposure (0–24 months of life) is associated with
higher risk of overweight/obesity/weight gain later in child-
hood.129–132 These results have been confirmed also in a recent
systematic review, which found any antibiotic exposure during
infancy as a risk factor for overweight later in childhood.133

Nevertheless, some recent papers did not confirm the associ-
ation between early-life antibiotic administration and later
weight gain.23 134 Differences in populations (including age and
geography) and in drugs features (antibiotic classes, dosages,
number of courses) may explain this disagreement. The import-
ance of early-life exposure in driving the metabolic effects of
antibiotics has been confirmed by data on antibiotic administra-
tion during pregnancy135 and adolescence,136 which respectively
confirm and disagree with those observed in infant population.

Moreover, antibiotics appear to influence also other metabolic
pathways, beyond weight gain. A short-term regimen of vanco-
mycin was shown to reduce peripheral insulin sensitivity and
microbiota diversity, together with a decrease in Firmicutes and
an increase in Proteobacteria, in obese patients,22 although these
findings were not confirmed in a further study.137 Finally, in a
large case–control study, a positive association between multiple
antibiotic courses (cephalosporins, penicillin, macrolides and
quinolones) and the risk of developing diabetes was
observed.138

In summary, the weight increase and metabolic impairment
due to low-dosage antimicrobial therapy may be the result of a
phylogenetic trick of human beings: it can be hypothesised that,
during ancient times, foods with intrinsic small antimicrobial
properties could have driven humans to weight increase and,
consequently, low-grade inflammation due to obesity. This
should be considered an advantage in conditions of undernour-
ishment and low availability of resources. Considering also the
positive correlation between early-life antibiotic exposure
and further development of allergic asthma,139–141 the use of
antibiotics in newborns should be pondered with care by
physicians.

Liver disease
More than two-thirds of the blood directed to the liver comes
from the gut, through the portal venous system; this makes
quite obvious that a close relationship between gut and liver, the
so-called ‘gut–liver’ axis, exists. In particular, the blood flow
drives to the liver several microbial derivates, including peptido-
glycans and endotoxins. Gut microbiota plays, indeed, a major
role in the pathogenesis of many chronic liver diseases, as sup-
ported by increasing evidence. Gut microbiota is known to
produce endogenous alcohol and to contribute to non-alcoholic
fatty liver disease (NAFLD).142 According to different studies,
several changes in gut microbiota composition have been
described in patients with NAFLD, sometimes with conflicting
findings, depending on methods and features of patients and
liver disease;143 144 interestingly, microbiota fingerprints of
NAFLD severity have been recently identified, as increase in
Bacteroides and Ruminococcus was respectively associated with
non-alcoholic steatohepatitis (NASH) and with high levels of
liver fibrosis.145 Finally, altered intestinal permeability has been
described in patients with NAFLD.146 Inadequate alcohol intake
is also known to alter gut microbiota composition, and increase
in Proteobacteria and depletion of Bacteroidetes, and their cor-
relation with endotoxaemia, was observed in alcohol-dependent
patients.147 148 Finally, two studies of patients with liver cirrhosis
showed an increase in pro-inflammatory bacterial families, espe-
cially Enterobacteriaceae and Streptococcaceae, and a decrease in
beneficial bacteria, including Bifidobacteria and Lachnospiraceae;
in particular, Child-Turcotte-Pugh score correlated positively
with Streptococcaceae abundance and negatively with
Lachnospiraceae abundance.149 More recently, quantitative meta-
genomics revealed decrease in Bacteroidetes and Firmicutes
phyla, and increase in Streptococcus and Veillonella genera, in
those patients.150 Gut microbiota is also known to influence the
development of HE by producing ammonia and eliciting an
endotoxin-dependent inflammatory response, which act in
synergy.151 Cirrhotic patients with HE display higher abundance
of Enterobacteriaceae and Alcaligenaceae than both subjects with
cirrhosis without HE and healthy controls; moreover, levels of
Porphyromonadaceae and Alcaligenaceae, which produce
ammonia by urea degradation, are associated with poor cognitive
performance.152
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As a large body of evidence proved their efficacy, antibiotics
are considered a cornerstone in the management of HE. After
early attempts with neomycin153 and metronidazole,154 the
most relevant data come from randomised-controlled trials on
rifaximin.

Rifaximin, given with or without lactulose, showed higher
efficacy than lactulose alone in the treatment of patients with
overt HE155 and was also more effective than placebo in main-
taining remission from HE,156 157 showing also good safety
data.157

Moreover, rifaximin achieved reliable efficacy results in the
treatment of minimal HE158 and also in the prophylaxis of
overt HE in patients with acute variceal bleeding.159

These clinical data have been recently supported by a strong
microbiological background: rifaximin has been demonstrated
to influence microbiota functions in patients with minimal HE.
In particular, despite non-significant changes in microbiota com-
position (higher abundance of Eubacteriaceae and reduction of
Veillonellaceae), treatment with rifaximin provided a significant
increase in serum saturated and unsaturated fatty acids, together
with reduction in microbiome–metabolome network connec-
tions, in particular those involving Enterobacteriaceae,
Porphyromonadaceae and Bacteroidaceae, without impairing
those regarding autochthonous taxa. These results were also
associated with improved cognitive performance in these
patients.160 This striking evidence let the FDA approve rifaxi-
min against the recurrence of overt HE or in patients intolerant
of lactulose.161

CONCLUSIONS
For better and worse, antibiotics have been shown to be able to
affect significantly gut microbiota composition, and conse-
quently, to lead to consequent clinical manifestations, either
with a ‘eubiotic’ effect or a ‘dysbiotic’ effect. Therefore, the
modulation of gut microbiota should be considered a new, strik-
ing therapeutic avenue to be used not only for infectious dis-
eases, but also for all other disorders associated with the
impairment of gut microbiota. Anyway, antibiotics should be
also considered as a double-edged sword since their overuse can
drive to harmful clinical consequences. A wiser use of antibiotics
in clinical practice, as well as a boost in this field of research, is
advocated for a better management of patients with disorders
related to the impairment of gut microbiota.
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