
Supplementary Material 
Patient Population and Clinical Phenotyping 
Well-characterized CD patients from the adult IBD Center at University of North Carolina 
were included in this study (IRB Approval # 10-0355, 14-2445 and 11-0359). A total of 
32 and 21 samples were submitted for RNA-seq and FAIRE-seq analyses, respectively. 
All non-genetic clinical phenotype data were collected by chart review and stored in a 
secured database.  Clinical phenotypes included demographic and clinical variables: 
age, gender, disease duration, age at diagnosis, disease location, and type of disease 
behavior (Table 1; Supplementary Table 2).  Mucosal biopsies were obtained from 
macroscopically unaffected sections of the ascending colon at time of surgery. These 
were also confirmed by an independent pathologist to have no active inflammation, only 
quiescent colitis. Tissue from non-IBD control patients was obtained at time for surgical 
resection for non-IBD related illness (Supplementary Table 3) and from a site distant 
from any pathology. The normal status of the area was confirmed by histology.  
 
Tissue Isolation and Processing for RNA and DNA 
Total RNA was isolated from flash-frozen tissue samples (mucosal not whole tissue) 
from surgical resections using the Qiagen RNeasy kit following the manufacturer’s 
protocol. DNA for FAIRE was isolated from the same samples as previously 
described[1]. 
 
Cell Culture and transcriptional reporter assay 
Human THP-1 acute monocytic leukemia cells were grown in RPMI-1640 supplemented 
with 10% fetal bovine serum and 1% penicillin/streptomycin at 37°C and 5% CO2. THP-1 
cells were seeded into 24-well plates (300,000 cells/well) 3 hours prior to transfection. 
 
Regulatory elements were PCR-amplified from THP-1 genomic DNA using the primers 
below. Amplicons were cloned into the KpnI and XhoI restriction sites of the firefly 
luciferase reporter vector pGL4.23 in both the forward and reverse directions with 
respect to the minimal promoter. Individual clones were isolated and validated by Sanger 
sequencing. Each clone was transfected into THP-1 cells in duplicate (500 ng per well) 
using Lipofectamine 3000 and Opti-MEM. Additionally, phRL-TK Renilla luciferase 
reporter vector (40 ng) was transfected as an internal transfection efficiency control. 
After 48 hours, cell lysates were seeded into a 96-well plate in triplicate and luciferase 
activity was measured using the Dual Luciferase Reporter Assay System. Activity was 
normalized to the empty vector control. Two-tailed t-tests were performed on the raw 
firefly luciferase/renilla luciferase activity ratio. 
 
SLC16A9  

Forward TGATTAGTAGGCCTCTCTCTGT 
Reverse GCTCCTCTAGACTAGACTGATTG 

SLC16A9 inverse  
Forward GCTCCTCTAGACTAGACTGATTG 
Reverse TGATTAGTAGGCCTCTCTCTGT 

DEPDC7  
Forward AAGAGGTTAAATGATTTGCCCTG 
Reverse CCCATGCAATTGAAAATCCACA 

DEPDC7 inverse  
Forward CCCATGCAATTGAAAATCCACA 
Reverse AAGAGGTTAAATGATTTGCCCTG 



RT-qPCR 
Total RNA was isolated from flash-frozen tissue samples (mucosal not whole tissue) 
from surgical resections using the Qiagen RNeasy kit following the manufacturer’s 
protocol. cDNA was derived from 1µg RNA by reverse transcriptase using the BioRad 
iScript cDNA Synthesis kit. RT-qPCR was then performed on these cDNA samples using 
the BioLine Hi-ROX SYBR kit with specific primers.  
 
Gene Forward (5'-3') Reverse (5'-3') 
PYGL CACTCAAGTGGTCCTGGCTC CGCATGGTGTTGACAGTGTT 
PDK1 GGACTTCTACGCGCGCTTCT AGCATTCACTGATCCGAAGTCC 
CEACAM7 CACCCTGAATGTCCGCTATGA CAGTCACTCTTCCCGAAATGC 
APOA1 GCCTTGGGAAAACAGCTAAACC CCAGAACTCCTGGGTCACA 

SUSD2 CTCGGGACACTCAACAACGA CATTGTGCACGGTCCAGTTG 
XPNPEP CACCCGTGTGCTGATAGGAA CCACCATTCGCCCTGATGTA 
GOLGA1 GAAACAGGACTTGGAGCAGC ATGTTTGCCATCTCAGGTCC 
GAPDH CCAAGGTCATCCATGACAACTTTGGT TGTTGAAGTCAGAGGAGACCACCTG 

 
RNA isolation and RNA-seq analysis pipeline 
Library preparation and mRNA sequencing were performed using protocols described 
previously[2]. In addition, all samples were genotyped using the Illumina Immunochip 
platform, and imputation was carried out with the MaCH-admix software[3]. Personalized 
genomes for each sample were created by incorporating known genetic variation from 
each individual. Paired-end 50-bp mRNA reads for each sample were then aligned to the 
corresponding personalized genome using GSNAP[4], with a kmer size of 15, two 
allowed mismatches per read, RefSeq splice site annotations, and the -v option for 
specifying heterozygous sites. A post-alignment blacklist step was used to filter reads 
that were aligned to problematic, highly-artefactual regions identified by ENCODE. This 
“allele-aware” alignment approach has been shown to greatly reduce mapping biases 
that arise due to discrepancies in genetic variation between an individual and the 
reference genome[5], and leads to a more accurate read count quantification. 
 
Post-alignment quantification of RPKM values was conducted using an in-house script 
with RefSeq gene annotations, yielding a full set of 23,679 genes. Of these, a total of 
14,873 genes were retained for differential expression analyses using the criteria that at 
least 10 samples had a RPKM > 1. Prior to analysis, RPKM values were incremented 
with a pseudocount of 1 and log normalized. Differentially expressed genes were called 
using DEseq[6] on raw counts for all genes, using an FDR cutoff of 0.05. Significance of 
overlap between previously published colon and ileum marker genes (947 genes) and 
differentially expressed genes between ileum-like and colon-like CD patients (849 
genes) was determined using a hypergeometric test. A total of 106 genes overlapped 
between those up-regulated in colon-like patients (315 genes) and normal colon tissue 
(531 genes), and 183 genes overlapped between those up-regulated in ileum-like 
patients (534 genes) and normal ileum tissue (416 genes). Using 23,348 genes tested 
for differential expression as the population size, P(X >= 106) = 2.67601007597266e-95 
for the colon-like overlap, and   P(X >= 183) = 4.090042811222961e-195 for the ileum-
like overlap. 
 Pediatric Crohn’s disease expression data from ileal tissue was processed into 
RPKM as described previously[7], and downloaded from GEO (accession number 
GSE57945). A psuedocount of 1 and log normalization was applied to the pediatric 



RPKM values, as described for the adult data. For joint analysis of pediatric ileal and 
adult colon expression data, we restricted to genes present in both data sets (22,525), 
and removed any genes highly expressed in one data set (mean RPKM > 5) but lowly 
expressed in the other (mean RPKM < 1), leading to a total of 21,881 genes. We then 
applied an additional quantile normalization step to the merged data matrix. 
 
Principal components analysis 
PCA analysis on adult individuals was performed using the log normalized RPKM values 
and the prcomp function in R. For the merged data matrix, the filtered, quantile-
normalized set consisting of 21,881 genes was supplied to the prcomp function. For 
PCA analysis that included only pediatric individuals, prcomp was applied to the same 
set of 21,881 genes, using the log normalized RPKM values (prior to quantile 
normalization). 
 
FAIRE and FAIRE-seq analysis pipeline 
FAIRE was performed as described previously[1]. 50 bp single-end sequences were 
generated at UNC-CH HTSF using the Illumina HiSeq 2000 platform. Reads were 
filtered requiring a quality score of 20 or greater in at least 90 percent of nucleotides, and 
adapter contaminated reads were removed with TagDust[8]. Additionally, no more than 5 
reads with identical sequence were retained. Non-filtered reads were aligned with SNP-
tolerant GSNAP software[4] to personalized genomes, constructed as described above 
using k-mer size of 15 and allowing 1 mismatch per read. Post-alignment blacklist 
filtering was performed as described for RNA-seq reads.  
 The full genome was tiled into 300 bp windows overlapping by 100bp, and raw 
FAIRE-seq read overlaps were computed for each region. Windows overlapping with 
simple and low complexity repeat regions (as defined by RepeatMasker and downloaded 
from UCSC table browser) and the ENCODE DAC blacklist regions were masked from 
downstream analysis. Window counts were normalized by total aligned read counts for 
each sample, and batch effect correction was performed in R using ComBat[9].  

Peaks were called using F-seq[10] with a feature size of 500 (-l option) and a 
user-supplied -bff background file for sequences of 50bp. A union set of peaks was 
created separately for each CD subclass (ileum-like and colon-like). A set of consistent 
peaks, defined as those peaks annotated in at least 30% of samples within a CD 
subclass, were created for each subclass. Peaks within 10bp were merged using the 
bedtools merge command with the –d 10 option, yielding a final union set of peaks for 
each CD subclass. To perform PCA, we first computed FAIRE signal at sliding 300-bp 
windows across the genome whose average normalized batch-corrected FAIRE signal 
was within a range of 10 to 100 and standard deviation exceeded 0.15. Resulting 
windows were then log10-transformed and median-centered. Differentially accessible 
regions (DARs) were identified using a two-sided t-test performed on normalized window 
counts for all 300 bp windows that intersected a peak in the consistent peak set for the 
two subclasses, as we have published previously[11]. When necessary, a single 
representative 300 bp window was selected from a group of overlapping 300 bp 
windows, where all were identified as a DAR, by selecting the 300 bp window with 
highest overall signal. 

To compute the enrichment of DARs near differentially expressed genes, first the 
number of DARs falling within 50kb of a differentially expressed gene was recorded. To 
determine significance, we randomly created 1,000 sets of 300 bp windows taken from 
the consistent peaks for each subclass, where each random set consisted of the same 
number of windows as the computed set of DARs. For each of the 1,000 permutation 
sets, the number of windows falling within 50kb of a differentially expressed gene was 



recorded. Significance was calculated empirically, by determining the number of 
permutation sets with a co-localization rate that exceeded the observed rate among the 
true DARs. 
 
GWAS loci enrichment permutation 
SNPs significantly associated with CD were downloaded from the NHGRI GWAS 
catalogue. In addition to the 163 tag SNPs represented in the catalogue, we included 
any SNP in high linkage disequillibrium (r2 > 0.8), yielding a total of 3,179 disease-linked 
SNPs. We computed overlap between DARs and SNPs using bedtools [12]. For 
comparison with the observed overlap and to determine empirical significance, we 
created 1,000 sets of non-disease associated SNPs. Each null SNP set was created by 
first mapping the 163 tag SNPs to a randomly chosen, similarly-annotated non-disease 
linked SNP, based on high concordance of number of LD buddies (r2 > 0.8), distance to 
nearest TSS, distance to nearest TES, and whether the SNP was in a gene and/or exon. 
The seed sets were subsequently expanded to include all highly linked SNPs (r2 > 0.8), 
and were then overlapped with DARs using bedtools. The resulting overlap rates 
represent the null distribution expected under random chance, and was used to 
determine the statistical significance of the observed overlap statistic. P-values were 
computed by taking the number of times the overlap of a permuted set exceeded that of 
the observed set and multiplying by two to reflect a two-tailed distribution. 
 
 
ChIP-seq analysis 
Aligned ChIP-seq reads for histone marks H3K27ac, H3K27me3, H3K36me3, 
H3K4me1, H3K4me3, and H3K9me3 were downloaded from the Epigenome Roadmap 
project data portal[13], for both colonic mucosa and small intestinal tissue. Base pair 
resolution ChIP-seq signal was computed for 3 kb windows centered at the midpoint of 
DARs in the two CD subclasses. This signal was calculated by tallying the number 
aligned ChIP-seq reads overlapping each base pair for each DAR in a subclass, 
normalizing by sequencing depth of the ChIP-seq data set, and aggregating by the mean 
normalized read count across all DARs.   
 
Selection of colon and ileum marker genes 
For the pediatric samples, we selected the 50 pediatric ileum samples each that were 
most colon-like and most ileum-like based on the PCA (Figure 2A, second PC). Then, 
for each of the 947 genes previously identified to be differentially expressed between 
colon and ileum[14], we computed the standard deviation in normalized expression 
values across non-IBD, colon-like CD, and ileum-like CD samples in the adult and 
pediatric cohorts. We retained the top 500 most variably expressed genes and plotted 
their expression in these samples in Figure 2B. 
 
Pathway Analysis 
Pathway-level enrichments were calculated using GSAA (http://gsaa.unc.edu) [15, 16]. 
For RNA-seq data, genes were first ranked based on differential expression between 
samples from two classes (i.e. CD vs non-IBD) based on the t-statistics from the 
differential gene expression tests. The ranked list of t-statistics was input to GSAA, using 
the pre-ranked analysis option.  
 In order to create a chromatin-based score for each gene, we mapped all DARs 
within 100 kb of a gene’s promoter to that gene, and then selected the most extreme t-
statistic as the score for that gene. Genes not within 100 kb of any DAR were assigned 
scores of zero. In order to reduce cases of a gene being mapped to differential FAIRE-



seq signal in a nearby gene’s promoter region (which is likely to represent a false 
positive), we took the additional step of masking all other gene’s promoters when 
computing each gene’s score. Gene scores were then input to GSAA as an ordered list, 
using the pre-ranked option.  
 Pathway enrichment was calculated for genesets derived from the Reactome 
Pathway Database (http://www.reactome.org/) [17]. Genesets with < 15 and > 500 
genes were not considered. Genesets with an FDR <0.1 based on 2,000 permutations 
across all genes were considered significantly enriched. 
 To visualize pathways that were significantly enriched for a given contrast (FDR 
5%), multidimensional scaling was used to find an optimal 2D arrangement of pathways 
based on a distance matrix of between-pathway semantic scores. Semantic scores were 
calculated using the makeDendrogram.py script of the python package pyEnrichment 
(https://github.com/ofedrigo/pyEnrichment, last accessed May 2016) and pathways were 
plotted using in-house R scripts.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Figures 

Supplementary Figure 1. Colon-like and ileum-like CD subclasses are demarcated 
by different tissue-specific histone modifications and enhancers and exhibit 
enhancer activity. A. qRT-PCR for CEACAM7 (colon marker) and APOA1 (ileum 
marker) expression in colon-like (n=11) and ileum-like (n=10) CD samples. P-values 
were computed using a two-sided t-test.  B. Average normalized ChIP-seq enrichment 
for histone modifications detected in colonic mucosa (top) and small intestine (bottom) 
by the Epigenome Roadmap Consortium around colon-specific and ileum-specific 
regions of differential chromatin accessibility. C. Unsupervised principal components 
analysis (PCA) of normalized batch-corrected FAIRE-seq signal at sliding 300-bp 
windows with variable chromatin accessibility across samples. D. Luciferase activity 
normalized to empty vector controls for three regions of differential chromatin 
accessibility, cloned in both forward and reverse orientations.  

Supplementary Figure 2. PCA analysis of pediatric CD patients reveals two 
disease subclasses in the ileum. Principal components 1 vs 2 (left) and 1 vs 3 (right) 
demonstrate that non-IBD and ileum-like CD samples group together, but that a 
separate group of colon-like samples segregate.  

Supplementary Figure 3. Pathway-level enrichments for CD vs non-IBD controls in 
adult (colon tissue) and pediatric (ileum tissue) patients.  

Supplementary Figure 4. Characterization and annotation of REACTOME 
pathways that were significantly differentially regulated between colon-like CD, 
ileum-like CD, and non-IBD samples from both adult and pediatric cohorts. 
Pathway sizes, categories based on direction of expression change, and broad 
annotation class labels are provided. 



Supplement figure 1 

 

 

 

 



Supplement figure 2 

 

 

 

Supplement figure 3 

 

 

 

 

 



Supplement figure 4 

 



Supplementary Table 1 
 

 
 
Supplementary Table 1. Top 20 differentially expressed genes for each CD 
subclass. The normalized mean expression level within ileum-like (IL) and colon-like 
(CL) subclasses, as well as log2 fold-change and FDR values were generated by DEseq. 



Supplementary Table 2 
 

 
 
 
Supplementary Table 2: Characteristics of individual adult Crohn’s disease patients. 
NA = Not applicable. UNK = unknown.



Supplementary Table 3 
 

 
 
 
Supplementary Table 3: Characteristics of individual adult non-IBD patients. 
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