Supplementary Material

Patient Population and Clinical Phenotyping

Well-characterized CD patients from the adult IBD Center at University of North Carolina
were included in this study (IRB Approval # 10-0355, 14-2445 and 11-0359). A total of
32 and 21 samples were submitted for RNA-seq and FAIRE-seq analyses, respectively.
All non-genetic clinical phenotype data were collected by chart review and stored in a
secured database. Clinical phenotypes included demographic and clinical variables:
age, gender, disease duration, age at diagnosis, disease location, and type of disease
behavior (Table 1; Supplementary Table 2). Mucosal biopsies were obtained from
macroscopically unaffected sections of the ascending colon at time of surgery. These
were also confirmed by an independent pathologist to have no active inflammation, only
quiescent colitis. Tissue from non-IBD control patients was obtained at time for surgical
resection for non-IBD related illness (Supplementary Table 3) and from a site distant
from any pathology. The normal status of the area was confirmed by histology.

Tissue Isolation and Processing for RNA and DNA

Total RNA was isolated from flash-frozen tissue samples (mucosal not whole tissue)
from surgical resections using the Qiagen RNeasy kit following the manufacturer’s
protocol. DNA for FAIRE was isolated from the same samples as previously
described[1].

Cell Culture and transcriptional reporter assay

Human THP-1 acute monocytic leukemia cells were grown in RPMI-1640 supplemented
with 10% fetal bovine serum and 1% penicillin/streptomycin at 37°C and 5% CO,. THP-1
cells were seeded into 24-well plates (300,000 cells/well) 3 hours prior to transfection.

Regulatory elements were PCR-amplified from THP-1 genomic DNA using the primers
below. Amplicons were cloned into the Kpnl and Xhol restriction sites of the firefly
luciferase reporter vector pGL4.23 in both the forward and reverse directions with
respect to the minimal promoter. Individual clones were isolated and validated by Sanger
sequencing. Each clone was transfected into THP-1 cells in duplicate (500 ng per well)
using Lipofectamine 3000 and Opti-MEM. Additionally, phRL-TK Renilla luciferase
reporter vector (40 ng) was transfected as an internal transfection efficiency control.
After 48 hours, cell lysates were seeded into a 96-well plate in triplicate and luciferase
activity was measured using the Dual Luciferase Reporter Assay System. Activity was
normalized to the empty vector control. Two-tailed t-tests were performed on the raw
firefly luciferase/renilla luciferase activity ratio.

SLC16A9

Forward | TGATTAGTAGGCCTCTCTCTGT
Reverse | GCTCCTCTAGACTAGACTGATTG
SLC16A9 inverse
Forward | GCTCCTCTAGACTAGACTGATTG
Reverse | TGATTAGTAGGCCTCTCTCTGT

DEPDC7

Forward | AAGAGGTTAAATGATTTGCCCTG
Reverse | CCCATGCAATTGAAAATCCACA
DEPDCY inverse
Forward | CCCATGCAATTGAAAATCCACA
Reverse | AAGAGGTTAAATGATTTGCCCTG




RT-gPCR

Total RNA was isolated from flash-frozen tissue samples (mucosal not whole tissue)
from surgical resections using the Qiagen RNeasy kit following the manufacturer's
protocol. cDNA was derived from 1ug RNA by reverse transcriptase using the BioRad
iScript cDNA Synthesis kit. RT-qPCR was then performed on these cDNA samples using
the BioLine Hi-ROX SYBR kit with specific primers.

Gene Forward (5'-3") Reverse (5'-3")

PYGL CACTCAAGTGGTCCTGGCTC CGCATGGTGTTGACAGTGTT
PDK1 GGACTTCTACGCGCGCTTCT AGCATTCACTGATCCGAAGTCC
CEACAM7 CACCCTGAATGTCCGCTATGA CAGTCACTCTTCCCGAAATGC
APOA1 GCCTTGGGAAAACAGCTAAACC CCAGAACTCCTGGGTCACA
SUSD2 CTCGGGACACTCAACAACGA CATTGTGCACGGTCCAGTTG
XPNPEP  CACCCGTGTGCTGATAGGAA CCACCATTCGCCCTGATGTA
GOLGA1  GAAACAGGACTTGGAGCAGC ATGTTTGCCATCTCAGGTCC

GAPDH CCAAGGTCATCCATGACAACTTTGGT TGTTGAAGTCAGAGGAGACCACCTG

RNA isolation and RNA-seq analysis pipeline

Library preparation and mRNA sequencing were performed using protocols described
previously[2]. In addition, all samples were genotyped using the lllumina Immunochip
platform, and imputation was carried out with the MaCH-admix software[3]. Personalized
genomes for each sample were created by incorporating known genetic variation from
each individual. Paired-end 50-bp mRNA reads for each sample were then aligned to the
corresponding personalized genome using GSNAP[4], with a kmer size of 15, two
allowed mismatches per read, RefSeq splice site annotations, and the -v option for
specifying heterozygous sites. A post-alignment blacklist step was used to filter reads
that were aligned to problematic, highly-artefactual regions identified by ENCODE. This
“allele-aware” alignment approach has been shown to greatly reduce mapping biases
that arise due to discrepancies in genetic variation between an individual and the
reference genome[5], and leads to a more accurate read count quantification.

Post-alignment quantification of RPKM values was conducted using an in-house script
with RefSeq gene annotations, yielding a full set of 23,679 genes. Of these, a total of
14,873 genes were retained for differential expression analyses using the criteria that at
least 10 samples had a RPKM > 1. Prior to analysis, RPKM values were incremented
with a pseudocount of 1 and log normalized. Differentially expressed genes were called
using DEseq[6] on raw counts for all genes, using an FDR cutoff of 0.05. Significance of
overlap between previously published colon and ileum marker genes (947 genes) and
differentially expressed genes between ileum-like and colon-like CD patients (849
genes) was determined using a hypergeometric test. A total of 106 genes overlapped
between those up-regulated in colon-like patients (315 genes) and normal colon tissue
(531 genes), and 183 genes overlapped between those up-regulated in ileum-like
patients (534 genes) and normal ileum tissue (416 genes). Using 23,348 genes tested
for differential expression as the population size, P(X >= 106) = 2.67601007597266e-95
for the colon-like overlap, and P(X >= 183) = 4.090042811222961e-195 for the ileum-
like overlap.

Pediatric Crohn’s disease expression data from ileal tissue was processed into
RPKM as described previously[7], and downloaded from GEO (accession number
GSE57945). A psuedocount of 1 and log normalization was applied to the pediatric



RPKM values, as described for the adult data. For joint analysis of pediatric ileal and
adult colon expression data, we restricted to genes present in both data sets (22,525),
and removed any genes highly expressed in one data set (mean RPKM > 5) but lowly
expressed in the other (mean RPKM < 1), leading to a total of 21,881 genes. We then
applied an additional quantile normalization step to the merged data matrix.

Principal components analysis

PCA analysis on adult individuals was performed using the log normalized RPKM values
and the prcomp function in R. For the merged data matrix, the filtered, quantile-
normalized set consisting of 21,881 genes was supplied to the prcomp function. For
PCA analysis that included only pediatric individuals, prcomp was applied to the same
set of 21,881 genes, using the log normalized RPKM values (prior to quantile
normalization).

FAIRE and FAIRE-seq analysis pipeline

FAIRE was performed as described previously[1]. 50 bp single-end sequences were
generated at UNC-CH HTSF using the lllumina HiSeq 2000 platform. Reads were
filtered requiring a quality score of 20 or greater in at least 90 percent of nucleotides, and
adapter contaminated reads were removed with TagDust[8]. Additionally, no more than 5
reads with identical sequence were retained. Non-filtered reads were aligned with SNP-
tolerant GSNAP software[4] to personalized genomes, constructed as described above
using k-mer size of 15 and allowing 1 mismatch per read. Post-alignment blacklist
filtering was performed as described for RNA-seq reads.

The full genome was tiled into 300 bp windows overlapping by 100bp, and raw
FAIRE-seq read overlaps were computed for each region. Windows overlapping with
simple and low complexity repeat regions (as defined by RepeatMasker and downloaded
from UCSC table browser) and the ENCODE DAC blacklist regions were masked from
downstream analysis. Window counts were normalized by total aligned read counts for
each sample, and batch effect correction was performed in R using ComBat[9].

Peaks were called using F-seq[10] with a feature size of 500 (-I option) and a
user-supplied -bff background file for sequences of 50bp. A union set of peaks was
created separately for each CD subclass (ileum-like and colon-like). A set of consistent
peaks, defined as those peaks annotated in at least 30% of samples within a CD
subclass, were created for each subclass. Peaks within 10bp were merged using the
bedtools merge command with the —d 10 option, yielding a final union set of peaks for
each CD subclass. To perform PCA, we first computed FAIRE signal at sliding 300-bp
windows across the genome whose average normalized batch-corrected FAIRE signal
was within a range of 10 to 100 and standard deviation exceeded 0.15. Resulting
windows were then logo-transformed and median-centered. Differentially accessible
regions (DARs) were identified using a two-sided t-test performed on normalized window
counts for all 300 bp windows that intersected a peak in the consistent peak set for the
two subclasses, as we have published previously[11]. When necessary, a single
representative 300 bp window was selected from a group of overlapping 300 bp
windows, where all were identified as a DAR, by selecting the 300 bp window with
highest overall signal.

To compute the enrichment of DARs near differentially expressed genes, first the
number of DARs falling within 50kb of a differentially expressed gene was recorded. To
determine significance, we randomly created 1,000 sets of 300 bp windows taken from
the consistent peaks for each subclass, where each random set consisted of the same
number of windows as the computed set of DARs. For each of the 1,000 permutation
sets, the number of windows falling within 50kb of a differentially expressed gene was



recorded. Significance was calculated empirically, by determining the number of
permutation sets with a co-localization rate that exceeded the observed rate among the
true DARSs.

GWAS loci enrichment permutation

SNPs significantly associated with CD were downloaded from the NHGRI GWAS
catalogue. In addition to the 163 tag SNPs represented in the catalogue, we included
any SNP in high linkage disequillibrium (r* > 0.8), yielding a total of 3,179 disease-linked
SNPs. We computed overlap between DARs and SNPs using bedtools [12]. For
comparison with the observed overlap and to determine empirical significance, we
created 1,000 sets of non-disease associated SNPs. Each null SNP set was created by
first mapping the 163 tag SNPs to a randomly chosen, similarly-annotated non-disease
linked SNP, based on high concordance of number of LD buddies (r* > 0.8), distance to
nearest TSS, distance to nearest TES, and whether the SNP was in a gene and/or exon.
The seed sets were subsequently expanded to include all highly linked SNPs (r2 > 0.8),
and were then overlapped with DARs using bedtools. The resulting overlap rates
represent the null distribution expected under random chance, and was used to
determine the statistical significance of the observed overlap statistic. P-values were
computed by taking the number of times the overlap of a permuted set exceeded that of
the observed set and multiplying by two to reflect a two-tailed distribution.

ChlIP-seq analysis

Aligned ChlIP-seq reads for histone marks H3K27ac, H3K27me3, H3K36me3,
H3K4me1, H3K4me3, and H3K9me3 were downloaded from the Epigenome Roadmap
project data portal[13], for both colonic mucosa and small intestinal tissue. Base pair
resolution ChlP-seq signal was computed for 3 kb windows centered at the midpoint of
DARs in the two CD subclasses. This signal was calculated by tallying the number
aligned ChlP-seq reads overlapping each base pair for each DAR in a subclass,
normalizing by sequencing depth of the ChlP-seq data set, and aggregating by the mean
normalized read count across all DARs.

Selection of colon and ileum marker genes

For the pediatric samples, we selected the 50 pediatric ileum samples each that were
most colon-like and most ileum-like based on the PCA (Figure 2A, second PC). Then,
for each of the 947 genes previously identified to be differentially expressed between
colon and ileum[14], we computed the standard deviation in normalized expression
values across non-IBD, colon-like CD, and ileum-like CD samples in the adult and
pediatric cohorts. We retained the top 500 most variably expressed genes and plotted
their expression in these samples in Figure 2B.

Pathway Analysis
Pathway-level enrichments were calculated using GSAA (http://gsaa.unc.edu) [15, 16].
For RNA-seq data, genes were first ranked based on differential expression between
samples from two classes (i.e. CD vs non-IBD) based on the t-statistics from the
differential gene expression tests. The ranked list of t-statistics was input to GSAA, using
the pre-ranked analysis option.

In order to create a chromatin-based score for each gene, we mapped all DARs
within 100 kb of a gene’s promoter to that gene, and then selected the most extreme t-
statistic as the score for that gene. Genes not within 100 kb of any DAR were assigned
scores of zero. In order to reduce cases of a gene being mapped to differential FAIRE-



seq signal in a nearby gene’s promoter region (which is likely to represent a false
positive), we took the additional step of masking all other gene’s promoters when
computing each gene’s score. Gene scores were then input to GSAA as an ordered list,
using the pre-ranked option.

Pathway enrichment was calculated for genesets derived from the Reactome
Pathway Database (http://www.reactome.org/) [17]. Genesets with < 15 and > 500
genes were not considered. Genesets with an FDR <0.1 based on 2,000 permutations
across all genes were considered significantly enriched.

To visualize pathways that were significantly enriched for a given contrast (FDR
5%), multidimensional scaling was used to find an optimal 2D arrangement of pathways
based on a distance matrix of between-pathway semantic scores. Semantic scores were
calculated using the makeDendrogram.py script of the python package pyEnrichment
(https://github.com/ofedrigo/pyEnrichment, last accessed May 2016) and pathways were
plotted using in-house R scripts.




Supplementary Figures

Supplementary Figure 1. Colon-like and ileum-like CD subclasses are demarcated
by different tissue-specific histone modifications and enhancers and exhibit
enhancer activity. A. qRT-PCR for CEACAM? (colon marker) and APOA1 (ileum
marker) expression in colon-like (n=11) and ileum-like (n=10) CD samples. P-values
were computed using a two-sided t-test. B. Average normalized ChIP-seq enrichment
for histone modifications detected in colonic mucosa (top) and small intestine (bottom)
by the Epigenome Roadmap Consortium around colon-specific and ileum-specific
regions of differential chromatin accessibility. C. Unsupervised principal components
analysis (PCA) of normalized batch-corrected FAIRE-seq signal at sliding 300-bp
windows with variable chromatin accessibility across samples. D. Luciferase activity
normalized to empty vector controls for three regions of differential chromatin
accessibility, cloned in both forward and reverse orientations.

Supplementary Figure 2. PCA analysis of pediatric CD patients reveals two
disease subclasses in the ileum. Principal components 1 vs 2 (left) and 1 vs 3 (right)
demonstrate that non-IBD and ileum-like CD samples group together, but that a
separate group of colon-like samples segregate.

Supplementary Figure 3. Pathway-level enrichments for CD vs non-IBD controls in
adult (colon tissue) and pediatric (ileum tissue) patients.

Supplementary Figure 4. Characterization and annotation of REACTOME
pathways that were significantly differentially regulated between colon-like CD,
ileum-like CD, and non-IBD samples from both adult and pediatric cohorts.
Pathway sizes, categories based on direction of expression change, and broad
annotation class labels are provided.
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Supplementary Table 1

Gene baseMean |baseMeanIL |baseMeanCL [log2FoldChange [FDR
NXPE4 794.7372| 17.20361581 1501.58592 6.439365753| 2.37E-49
SATB2-AS1 | 129.6677| 1.512208909( 246.1727847 7.255074696( 1.15E-41
CWH43 284.0867| 7.831195838| 535.2280187 6.076740947 | 2.74E-41
VSIG2 549.0849| 22.56218639| 1027.741953 5.503187579| 3.35E-37
CA2 7492.625( 92.29712198| 14220.19625 7.265887891| 4.60E-22
NXPE1 917.9078( 128.8984973| 1635.18905 3.664119501( 6.38E-20
B3GALT1 77.01145| 2.857657527( 144.4239827 5.610710097| 1.03E-19
k) GAL3ST2 4451628| 1.195573618| 83.89874662 6.0187049( 3.65E-17
:§ FOXD2 111.0708| 17.71552037| 195.9391437 3.459935222( 1.37E-15
2 CEACAM7 10201.14| 77.75598868| 19404.21291 7.961353618| 2.90E-15
& LEFTY1 361.2523( 9.816044775| 680.7398663 6.10140692| 2.57E-14
—g SLPI 156.3061| 25.78914762| 274.9578363 3.409315634( 3.44E-14
(&) AIFM3 374.2034 | 59.74500259| 660.0746817 3.463545127| 3.56E-14
EYA2 135.8655| 6.531586038| 253.4417939 5.256725818| 9.05E-13
L1TD1 387.9812( 19.28848066| 723.1563512 5.221235428| 1.56E-12
ATP13A4 78.14697( 13.87846262| 136.5728826 3.28944942| 2.05E-12
C100rf99 952.5956| 191.0196081( 1644.937378 3.105572659| 7.33E-12
RHBDL2 111.8022| 15.02319539| 199.7831916 3.724322255| 8.41E-12
TFCP2LA1 1317.31| 134.4163809| 2392.667042 415282617 1.77E-11
PARM1 2306.327 | 550.1196899| 3902.879409 2.826496178| 3.11E-11
CPS1 5031.883( 10519.44911| 43.18748184 -7.924907277| 7.92E-61
CPS1-1T1 51.8355| 108.5096878| 0.313508808 -8.037019019| 1.33E-36
RBP2 3246.114| 6785.64995( 28.35453319 -7.897705947( 8.57E-35
CEACAM18 | 37.59547| 78.36646426( 0.530931261 -6.958449548| 2.21E-29
HTR1D 82.69207| 169.0033704| 4.227248286 -5.288311703| 4.77E-29
TM6SF2 426.1704| 865.9806953 26.342828 -5.033553068( 6.39E-26
ABCC2 711.8181| 1467.356445( 24.96514509 -5.871491288( 4.28E-25
o MTTP 7392.924( 15471.31053| 48.93696939 -8.301519199| 4.28E-25
S ALPI 1527.674| 3130.771863| 70.31215346 -5.474596188| 7.18E-24
8 TMPRSS15 | 364.0587| 763.2343771| 1.171627182 -9.229495595| 2.23E-23
“é’ CCL25 1125.929| 2356.507326( 7.220973255 -8.330460217| 2.31E-23
3 SULT1EA 207.2398 | 427.6343316| 6.881042843 -5.937128632( 1.99E-22
= GSTA2 525.3816| 1095.396045| 7.186602982 -7.232122175| 1.26E-21
SLC2A2 1015.416| 2127.691109| 4.256362351 -8.932016851| 3.65E-21
CREB3L3 1546.829| 3204.749616| 39.62905799 -6.333918265( 8.86E-20
APOB 48064.94| 100602.0138| 303.9580369 -8.37009818| 1.32E-19
GSTA1 3152.422( 6542.114402| 70.88340128 -6.526153525( 9.96E-18
CLDN15 664.4674( 1269.840222| 114.1284281 -3.474766943| 5.50E-17
oTC 646.8354( 1253.617774| 95.21497145 -3.717365967| 1.31E-16
C190rf69 90.85682| 190.2338293| 0.514088476 -8.275869758( 1.38E-16

Supplementary Table 1. Top 20 differentially expressed genes for each CD
subclass. The normalized mean expression level within ileum-like (IL) and colon-like
(CL) subclasses, as well as log, fold-change and FDR values were generated by DEseq.



Supplementary Table 2

Phenotype
Patient ID
Location
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Post-operative outcome

Disease recurrence

Biologic Use

Colectomy

Second resection

Time to first resection (years)
Time from first to second
resection (years, if applicable)
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| Table 2: Charactersitics of individual adult Crohn's disease patients. NA = Not applicable. UNK = unknown.

1=yes; 0=no
1=yes; 0=no
1=yes; 0=no

years
1=yes; 0=no
1=yes; 0=no

1=current or previous smoker; O=never smoked

1=yes; 0=no
1=yes; 0=no
1=yes; 0=no

1=yes; 0=no
1=yes; 0=no
1=yes; 0=no

Supplementary Table 2: Characteristics of individual adult Crohn’s disease patients.
NA = Not applicable. UNK = unknown.




Supplementary Table 3

Patient ID 22 23 27 30 32 36 39 43 48 49 50
Location

lleum-only 0 0 0 0 0 0 0 0 0 0 0
Colon-only 1 1 1 1 1 1 1 1 1 1 1
lleum+Colon 0 0 0 0 0 0 0 0 0 0 0
Patient Characteristics

Age at Surgery (years) 53 52 70 82 44 41 52 45 70 62 49
Male 0 1 1 0 1 0 1 0 1 1 0
Female 1 0 0 1 0 1 0 1 0 0 1
Smoker

Inflammation

Macroscopic 0 0 0 0 0 0 0 0 0 0 0
Microscopic 0 0 0 0 0 0 0 0 0
None 1 1 1 1 1 1 1 1 1 1 1
Disease Phenotypes

Colon Cancer 1 1 0 1 1 0 1 0 0 0 0
Diverticulitis 0 0 1 0 0 0 0 0 0 0 0
Colonic Inertia 0 0 0 0 0 1 0 1 0 0 0
Adenoma 0 0 0 0 0 0 0 0 1 1 0
Si Neuroendocrine Tumor 0 0 0 0 0 0 0 0 0 0 1

Pre-operative treament history

Steroids

5-ASA
Immunomodulation
Anti-TNF
Non-anti-TNF biologic

Post-operative outcome

Disease recurrence

Biologic Use

Colectomy

Second resection

Time to first resection (years)
Time from first to second
resection (years, if applicable)

Supplemental Table 3: Charactersitics of individual adult non-IBD patients.
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1=yes; 0=no
1=yes; 0=no

years

1=yes; 0=no

1=yes; 0=no

1=current or previous smoker; O=never smoked

1=yes; 0=no
1=yes; 0=no
1=yes; 0=no

1=yes; 0=no
1=yes; 0=no
1=yes; 0=no
1=yes; 0=no

1=yes; 0=no
1=yes; 0=no
1=yes; 0=n0
1=yes; 0=no
1=yes; 0=n0
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1=yes; 0=no
1=yes; 0=no
years

years

Supplementary Table 3: Characteristics of individual adult non-IBD patients.
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