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1. METHODOLOGICAL DESCRIPTION

1.1 Patient inclusion

Patients and Images (Augsburg data)
Patients included in the study belonged
to one of three categories:

1. Patients referred for standard surveil-
lance of Barrettt's esophagus (BE)

2. Patients referred with a proven neopla-
sia in a random biopsy for further eval-
uation

3. Patients referred for endoscopic treat-
ment of a confirmed early esophageal
adenocarcinoma (EAC).

In some patients with long-segment BE, im-
ages were taken from different regions in
the same patient. Images included 148 high
definition (1350 x 1080 pixels) white light
(WL) and narrow-band images (NBI) of 33
early EAC and 41 areas of non-neoplastic
Barretts mucosa. Images were collected by
three endoscopists (AE, HM, AP) experi-
enced in the evaluation of BE. Only images
of EAC with Paris 0-Ila or 0-IIb morphol-
ogy were included in the study. All images

were recorded using the near-focus / mag-
nification function of a conventional video
gastroscope (GIF-HQ190, Olympus Medical
Systems, Tokyo, Japan). A transparent hood
was attached to the tip of the scope to main-
tain the same distance to the mucosa during
image acquisition.

Medical Image Computing and Computer
Assisted-Intervention (MICCAI) data

The MICCAI data is an open access image
data set provided by the Endoscopic Vision
Challenge at the MICCAI conference 2015.
It contains 100 high-definition (1600 x 1200
pixels) WL and pathologically validated en-
doscopic images from 39 patients; 17 pa-
tients with early EAC and 22 with non-
neoplastic Barretts. In each image with
EAC, the neoplastic area had been delin-
eated by five international BE experts.

1.2 Patient exclusion

For the Augsburg data, exclusion criteria
were:

1. Age <18 years

2. Patients under anticoagulant therapy


https://endovissub-barrett.grand-challenge.org/home/
https://endovissub-barrett.grand-challenge.org/home/

prohibiting esophageal biopsy or endo-
scopic treatment

3. ASA Grade IV

4. Images of protruding, pedunculated,
depressed or excavated lesions (Paris O-
Ip/Is, O-Ilc and O-III) were excluded in
the Augsburg data set.

1.3 IRB/ registration

The study was conceived as a prospective
single-center trial. Ethics approval with the
Reference Number 2017-11 was granted by
the local institutional review board of the
Klinikum Augsburg. The clinical part of
the study including recruitment of patients,
acquisition, and annotation of endoscopic
images of the Augsburg data was done at
the Department of Gastroenterology of the
Klinikum Augsburg from November 2016
to November 2017. The CAD-DL evalua-
tion of the endoscopic images was done at
the Regensburg Medical Image Computing
(ReMIC]) lab at the Ostbayerische Technische
Hochschule Regensburg (OTH Regensburg,
Technical University of Applied Sciences).

1.4 Owutcomes

e Comparison of the diagnostic perfor-
mance of the CAD with deep learning
(CAD-DL) system, trained and tested
separately on two distinct image sets
(Augsburg and MICCALI data).

e Comparison of the diagnostic perfor-
mance of the CAD-DL system on cor-
responding NBI and WL images.

e Assessment of the performance of en-
doscopists on both data sets (MICCAI
and Augsburg), compared with the di-
agnostic performance of the CAD-DL
system.

e Computation of an automated segmen-
tation of the tumor region based on
the cancer probability provided by the

deep learning system. This allows the
comparison of automated and manual
expert delineations.

1.5 Study approach

Endoscopic resection and histology (Augs-
burg data)

After endoscopic examination and imag-
ing, EAC was resected by endoscopic sub-
mucosal dissection (ESD). For regions of
normal Barretts mucosa without dysplasia,
a biopsy was taken using standard biopsy
forceps. For correct correlation between the
image given to the CAD-DL system and the
spot out of which the biopsy was taken, the
examiner tried as much as possible to keep
the endoscopic view in the same position be-
tween image acquisition and biopsy using
the transparent hood.

The histology of the resection specimen or
the biopsy served as the reference standard
for the characterization of images. Based on
the results of histology, the endoscopic im-
ages were divided into two categories:

e Early EAC (pT1)
e Non-neoplastic Barretts mucosa (BE)

Histological diagnosis was validated by a
second pathologist.

Tumor segmentation / Delineation of can-
cer margins (Augsburg data)

After image acquisition, a region of inter-
est was delineated using the open source
image editing program GIMP. The delin-
eation was performed by one of the three
experienced endoscopists and routinely re-
evaluated by another one of the three. The
manual delineations show the tumor mar-
gins and suspicious regions in EAC and BE
images, respectively. They were used for
training of the deep learning classification
system and additionally served as the refer-
ence standard for the tumor segmentation
task subsequently given to the CAD-DL sys-
tem.


https://www.re-mic.de
https://www.gimp.org

Image evaluation by endoscopists

To establish a basis of comparison for the
results of the CAD-DL system, 13 endo-
scopists blinded to the true diagnosis were
asked to characterize images of both data
sets. During image evaluation, the endo-
scopists provided a level of certainty by
stating whether they felt confident or not-
confident about their diagnosis. For pur-
poses of uniformity between both data sets,
only WL images were evaluated in this part
of the study. For the MICCAI data, endo-
scopists were offered the first WL image of
each region (39 images), and regarding the
Augsburg data, endoscopists evaluated 74
WL images.

1.6 Device and technique

Computer-Aided Diagnosis / Deep Lear-
ning system

The proposed CAD-DL system is a spe-
cial case of a deep convolutional neural net-
work (CNN) with a residual net (ResNet) ar-
chitecture [1]. For this study, our ResNet
consisted of 100 layers, where the param-
eters are learned during a training phase
and the diagnosis is estimated during a test
phase. Both, training and testing were done
completely independent for the two data
sets.

To ensure a strict separation of train-
ing and testing data as well as to in-
crease training and test corpus size at the
same time, a leaving-one-patient-out cross-
validation (LOPO-CV) approach was con-
ducted. LOPO-CV means, that all informa-
tion of one patient (left-out patient) were
taken out of the training set. Then, the deep
learning system was trained on the images
of the remaining patients. Hereafter, the im-
age of the left-out patient was used for clas-
sification. Thus, looping over all patients
and taking P patients into account, each pa-
tient served P — 1 times in a training set and
once in a test set.

For training, small patches were gener-
ated from the endoscopic color images and

augmented to simulate similar instances of
the same class. Finally, the parameters were
adjusted using the training data. For clas-
sification, firstly the class probabilities for
each patch of the test image were estimated.
Then, the class decision for the full image
was compiled from the patch class proba-
bilities. See Figure 1 (main text) for an
overview of the system.

A definition of a particular number of
images sufficient for training a CAD-DL
system is virtually impossible. Although
the patch-based approach in combination
with LOPO-CV increased the corpus size for
training considerably, a minimum number
of 60 — 80 images were assumed to be re-
quired. For our experiments, we used 7219
patches and 5359 patches for Augsburg and
MICCAI data respectively, without taking
augmentation into account.

1. Training patch generation: The full
images were sampled randomly by ex-
tracting patches with a size of 224 x 224
pixels. The class of each patch was
determined by the delineations of the
human experts. For the MICCAI data
with five delineations, the intersection
area was chosen as the ground truth.
The MICCAI data contained two kinds
of areas: delineations of dysplastic re-
gions; all other regions were defined
as non-dysplastic. The Augsburg data
showed three different kinds of areas:
tumor margins, suspicious BE regions
and background. Therefore, the MIC-
CAI data were treated as a two-class
problem, the Augsburg data as a three-
class problem.

2. Augmentation: To enhance the gen-
eralization ability of the network, the
patches were modified systematically.
Rotation, translation, mirroring along
the horizontal and vertical axis as well
as contrast, brightness hue and satura-
tion jittering were applied to each patch
in a randomized fashion.



3. Training the model: Training a deep
learning model means minimizing a
given loss function, which expresses
how close the prediction is to the
ground truth. For our experiments, we
employed the margin loss function [Z].
For a reasonably proper initialization
of the ResNet parameters, the transfer
learning approach was chosen [, B].

4. Patch classification: For testing, the
full image was sampled equidistantly
into overlapping patches of size 224 x
224 pixel with an offset of 50 pix-
els. Then, each sample was propagated
feed-forward through the ResNet. This
resulted in a probability for each class
for each patch.

5. Image classification and segmentation:
For classification, a threshold ¢ regard-
ing these patch-specific class probabili-
ties was considered. Only if the prob-
ability of class cancer exceeded t for at
least one patch, the image was classi-
fied as cancer. For segmentation, t was
applied to all patches resulting in bi-
nary images.

Hardware and Software

The deep learning experiments were ap-
plied on a Graphics processing unit (GPU)
cluster with 8 Nvidia 1080Ti. The software
was based the Pytorch framework, which is
publicly available and open source.

1.7 Data analysis

The performance of the CAD-DL system
was evaluated separately for the classifica-
tion and the segmentation task. The classifi-
cation results were shown in terms of sensi-
tivity (SE), specificity (SP) and F1l-measure
as the harmonic mean of SE and SP:
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The segmentation results were evaluated us-
ing the Dice coefficient D [4]. D takes the
overlap of an automated segmentation A
and the binary mask resulting from the in-
tersection of expert delineations E into ac-
count. Then, D is defined as:

_ 2]ENA|

D=2=""“1
[E[ +|A]

4)

In this study, the images were cropped by
at least 87 pixels (patch size / 2 - offset /
2) before D was computed, because only
patches which were completely inside the
image were processed.

Statistical analysis

An exact 2-sided McNemar test was per-
formed to check the sensitivity and speci-
ficity results of endoscopists against the
CAD-DL system as well as the CAD-DL re-
sults on WL against those on NBI. For p
values below .05, the results were assumed
to be statistically significantly different. The
testing was performed with the help of the
software K.

2. DETAILS OF RESULTS

2.1 Patient characteristics

For the Augsburg data, a total of 74 regions
from 62 patients (2 females, 60 males) with
a median age of 66 years underwent endo-
scopic imaging using near-focus WL as well
as NBI. The MICCALI data set is described
above.

2.2 Technical details

Performance of CAD-DL in images of
early EAC

After training, our CAD-DL system was
able to diagnose EAC in WL images for the
best F1 value of 92% with a sensitivity of
97% and a specificity of 88%, when a thresh-
old of t = 0.90 was used. Changing the


http://pytorch.org
https://www.r-project.org

Augsburg data, WL

t 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.99
SE | 1.00 1.00 1.00 0.97 0.97 0.97 0.85 0.74
SP | 034 0.49 0.54 0.68 0.76 0.88 0.93 0.98
F1 | 072 0.76 0.78 0.83 0.86 0.92 0.88 0.79
Augsburg data, NBI

t 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.99
SE | 1.00 1.00 1.00 1.00 0.97 0.97 0.94 0.74
SP | 0.35 0.35 0.36 0.43 0.53 0.60 0.80 0.95
F1 | 072 0.72 0.73 0.75 0.77 0.80 0.86 0.82
MICCALI data

t | 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.99
SE | 092 0.92 0.92 0.90 0.81 0.79 0.69 0.50
SP | 098 0.98 1.00 1.00 1.00 1.00 1.00 1.00
F1 | 095 0.95 0.96 0.95 0.90 0.88 0.81 0.67

Tab. 1: Diagnostic performance of CAD-DL on the Augsburg and MICCAI images for

different thresholds t.

threshold resulted in varied values for sen-
sitivity and specificity accordingly. For NBI
images, the best F1 value with 86% was
achieved for t = 0.95 resulting in a sensitiv-
ity and specificity of 94% and 80%, respec-
tively, again with varying results depending
on the threshold value used (Table ). Sen-
sitivity and specificity of CAD-related WL
and NBI results were statistically equal.

In the MICCAI images, CAD-DL
achieved a sensitivity and specificity of
92% and 100%, respectively, for the best F1
value of 96% at a lower threshold of 0.75
(Table M). Therefore, our previous results [3]

Augsburg data MICCAI data

p o | v
SE [ 0.76 011 | 0.99 0.03
SP | 0.80 012 | 078 0.10
F1 | 077 005 | 087 0.07

Tab. 2: Diagnostic performance of standard endo-
scopists on WL images with mean y and standard
deviation o.

were enhanced further. The performance
measures remained constant in the range of
t =0.65 to t = 0.80.

Performance of endoscopists in both data
sets

The performance of the 13 endoscopists
is shown in Table D. The mean sensitivity
and specificity value were 76% and 80%, re-
spectively, for the Augsburg data. For the

Augsburg data MICCAI data
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Fig. 1: ROC curves — Augsburg WL (left) and MIC-
CAI (right) — illustrating the diagnostic performance
of endoscopists as compared with the CAD-DL sys-
tem. Marked with a black circle is the overall best re-
sult of CAD-DL for the F1 value (cf. Table ). These
values were used for the McNemar significance tests.



Augsburg data, WL

t ‘ 050 055 065 070 075 080 08 090 09 099
D,|072 071 067 065 062 060 055 048 041 0.18
D,| 018 019 021 023 024 024 025 026 022 0.16

Augsburg data, NBI

t ‘ 050 055 065 070 075 080 08 09 095 099
D,|072 071 067 065 062 059 057 051 043 035
D,| 020 020 023 024 025 026 026 028 030 025

MICCALI data

t ‘ 050 055 065 070 075 080 085 090 095 099
D,| 056 05 051 048 046 044 045 042 040 038
D, 018 019 021 023 025 026 024 025 026 028

Tab. 3: Dice coefficient as measure of overlap in tumor segmentation between CAD-DL and
experienced endoscopists in terms of mean D, and variance D, for different thresholds t.

MICCAI data sensitivity and specificity of tivity and specificity achieved by the endo-
99% and 78%, respectively, were achieved. scopists in comparison with the CAD-DL
The ROC curves (Figure [, Supplemental system which had more stable values across
Material) illustrate the variability of sensi- both data sets.
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Fig. 2: Examples of the tumor segmentation of Augsburg WL data are shown by a green contour
overlaid on the original image (top) and the pseudo-colored patch-based probability maps (bottom).
For comparison, the manual segmentation of an experienced endoscopist is drawn in red. The images
represent the best result (left column, D = 0.96), one example of a mean result (middle column,
D = 0.72), as well as the worst result (right column, D = 0.15). Note, that the CAD-DL segmentation
is restricted to the area indicated by the orange dashed line.



Fig. 3: Examples of the tumor segmentation of MICCAI data. The images represent the best result
(left column, D = 0.87), one example of a mean result (middle column, D = 0.56), as well as the
worst result (right column, D = 0.11). The red contour is the interception of the manual delineations
of five experienced endoscopists.

Furthermore, the difference in difficulty
diagnosing both data sets was shown by the
proportion of confident statements given by
the endoscopists. Taking only the cancer im-
ages into account, for the Augsburg data on
average 69% of the statements were labeled
as confident compared to 79% for the MIC-
CAI data. 81% and 100% of these confident
statements were correct for the Augsburg
data and MICCAI data, respectively.

Performance comparison of endoscopists
and CAD-DL

The McNemar test revealed statistically
significant outperformance of the CAD-DL
system for eleven of the 13 endoscopists
for the Augsburg data either for sensitiv-
ity or specificity or for both. Only two en-
doscopists performed equal to the CAD-DL
system. In seven cases the CAD-DL system
showed a better sensitivity but equal speci-
ficity, in two cases equal sensitivity and bet-
ter specificity and in one case both better
sensitivity and specificity.

Since the performance of the endoscopists
was much higher for the MICCAI data, a sta-
tistically significant difference was harder

to achieve. Nevertheless, the CAD-DL sys-
tem still outperformed four endoscopists in
terms of sensitivity even for the MICCAI
data. All other results were statistically
equal.

Performance of CAD-DL in tumor segmen-
tation and delineation

The measure of overlap (Dice coefficient
D) between the segmentation of CAD-DL
and that of experienced endoscopists can
range between 0 (no overlap) and 1 (com-
plete overlap). D was computed only for
images correctly classified by CAD-DL as
cancerous, and the results for the Augsburg
and the MICCAI data are shown in Table B.
At a threshold of + = 0.5, a mean value of
D = 0.72 was computed for the Augsburg
data, equally for WL and NBI images (Fig-
ure B, Supplemental Material). In the MIC-
CAI data, D was 0.56 on average (Figure B,
Supplemental Material).
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