1	Supplementary materials for
2	Gut dysbiosis induces the development of preeclampsia through bacterial
3	translocation
4	Xia Chen ^{1, #} , Pan Li ^{2, #} , Mian Liu ^{1, #} , Huimin Zheng ^{2, 3} , Yan He ² , Muxuan Chen ² , Wenli
5	Tang ² , Xiaojing Yue ¹ , Yongxin Huang ¹ , Lingling Zhuang ⁴ , Zhijian Wang ¹ , Mei Zhong ¹ ,
6	Guibao Ke ⁵ , Haoyue Hu ¹ , Yinglin Feng ¹ , Yun Chen ¹ , Yanhong Yu ¹ , Hongwei Zhou ² ,
7	and Liping Huang ¹
8	1. Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical
9	University, Guangzhou, China
10	2. Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital,
11	Southern Medical University, Guangzhou, China.
12	3. Microbiome Research Centre, St George and Sutherland Clinical School, University
13	of New South Wales, Sydney, Australia.
14	4. Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang
15	University, Nanchang, China
16	5. Department of Nephrology, Affiliated Hospital of Chengdu University, Chengdu,
17	China.
18	# Contributed equally.
19	Correspondence to: Professor Liping Huang, Department of Obstetrics and Gynecology,
20	Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Tel:
21	+86(20)61641909; Email: lphuang2006@126.com, Professor Hongwei Zhou,
22	Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital,

23	Southern Medical University, Guangzhou 510515, China; Tel: +8618688489622;
24	Email: hzhou@smu.edu.cn and Professor YanHong Yu, Department of Obstetrics and
25	Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515,
26	China; Tel: +8613503080093; Email: yuyh1010@hotmail.com.

27 This file includes:

- 28 Supplementary materials and methods
- 29 Supplementary figures S1-S10
- 30 Supplementary tables S1-S6

31 Supplementary materials and methods

32 Human sample collection

33 Ethical approval was granted by the Ethics Committee of Nanfang Hospital (NFEC-2017-055). Fecal samples were collected from all enrolled subjects at the hospital and 34 35 stored at -80°C before further processing. The exclusion criteria of the fecal sampling were as follows: (1) administration of any antibiotic or probiotic treatment one month 36 37 before sample collection; (2) diseases that may affect microbiome composition such as thyroid disorders, asthma, lipid metabolic disorders, inflammatory bowel disease, 38 39 irritable bowel syndrome, and celiac disease; (3) chronic hypertension, chronic kidney 40 disease, or other obstetric conditions complicating pregnancy.

Placental samples were randomly obtained from 22 NP and 24 PE patients with severe
features during caesarean section in an operating room to ensure sterility. Briefly,
following standard obstetrical practice, six 1-cm³ cuboidal sections were immediately

44	obtained from each placenta: three from the maternal side of the placenta and three from
45	the fetal side. The personnel wore facial masks and sterile gloves and used a sterile
46	scalpel and other instruments. Each sample was rinsed in sterile phosphate-buffered
47	saline (PBS), placed in a sterile cryovial, flash-frozen in liquid nitrogen, and stored at
48	-80°C. One maternal-side biopsy sample and one fetal-side sample were selected
49	randomly for mRNA and DNA isolation, respectively. We also collected several types
50	of negative controls as follows: (1) sterile wet swabs that were opened in the sample
51	sampling room, waved in the air and subjected to the same treatment as the placental
52	samples, such as washing with sterile PBS, freezing in cryovials, and storage or
53	transportation of the samples ("Swab"); (2) DNA-free water that was processed with
54	the DNA extraction ("H ₂ O"); (3) PCR-grade water processed in parallel to the samples
55	during amplification and DNA sequencing acquisition ("H2O"). These negative
56	controls were strictly performed side-by-side with placental samples at the same time,
57	space, and exposure, with identical reagents, equipment, and personnel. Different
58	sample groups were randomized and not processed separately from collection to
59	sequencing.

60 Details of animal experimental protocol

61 C57BL/6 mice were obtained from the experimental animal center of Southern Medical 62 University. All experimental procedures complied with the National Institutes of Health 63 guidelines and ethics approval was obtained from the local Animal Care and Use 64 Committee of the Southern Medical University. Fresh fecal samples were collected 65 from the donors, resuspended in PBS at 0.125 g/mL, and centrifuged to obtain the

66	supernatant. Following antibiotic treatment, the recipient mice were randomly divided
67	into three groups and orally inoculated daily for 3 consecutive days and twice each
68	week for 59 days with PBS and the prepared fecal contents mixture from PE or healthy
69	donors. Microbial concentrations of preparations were determined by fluorescent in situ
70	hybridization combined with flow cytometry, and mice were administered a dose of
71	approximately 3×10^{10} cells. After overnight mating, we enrolled 10 pregnant mice in
72	each group and other mice were excluded from the study at 45 days post-FMT. Three
73	or four mice were housed in a standard mouse cage before pregnancy. After confirming
74	the pregnancy, the mice were housed individually until the end of the experiment.
75	During the experiment, two control and two PE-FMT mice delivered before the end of
76	the experiment. The remaining mice in the control $(n = 8)$ PE-FMT $(n = 8)$, and NP-
77	FMT ($n = 10$) groups were evaluated in subsequent experiments. The gut microbial
78	profiles of recipient mice were analyzed by 16S RNA sequencing after 6 weeks. For BP
79	measurements, SBP was measured via the tail cuff method using a non-invasive BP
80	instrument (Softron Biotechnology, Beijing, China). Urine was collected by massaging
81	the bladder for one time at 6 weeks post-FMT (prior to mating) and 17 days of gestation.
82	Seventeen days after confirming the pregnancy, the mice were anesthetized and
83	sacrificed. The numbers of viable and resorbed pups were counted and recorded;
84	placentas and other tissues were harvested for further analysis.

85 Total bacterial genomic DNA extraction and sequencing.

86 Bacterial genomic DNA was extracted using a MinkaGene Stool DNA kit and

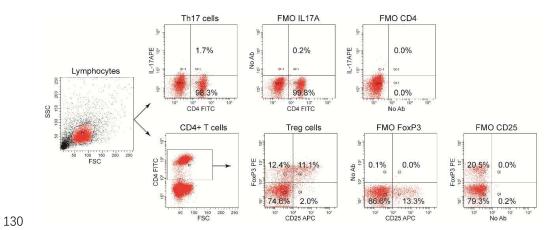
87 MinkaGene Tissue DNA kit (Magigene, Guangdong, China) according to the

88	manufacturer's instructions. After extraction, the 16S rDNA V4 region was amplified
89	by quantitative real-time PCR as described previously ¹ and sequenced for fecal samples
90	and placental samples using a HiSeq platform (Illumina, 2×250 bp paired-end) and ISeq
91	platform (Illumina, 2 \times 150 bp paired-end), respectively. For the placenta samples,
92	decontam (v1.4.0) and SourceTracker (v1.0.1) were performed to filter the putative
93	contaminants. Based on the bacterial prevalence, R package decontam was employed
94	to determine the suspected contaminated OTUs. Also, SourceTracker was employed to
95	determine the latent contaminant percentage of each OTU based on the bacterial
96	frequency. Then the suspected contaminated OTUs were deleted and the remained
97	OTUs were adjusted by the Sourcetracker percentage. The further placental analyses
98	were performed after the decontamination procedures. The placenta samples were
99	handled in an isolated, low-contaminant, controlled environment where surfaces and
100	equipment treated with ultraviolet radiation to minimize and fragment environmental
101	contaminant DNA. Moreover, personnel wore protective clothing and equipment to
102	cover all exposed human surfaces. All placentas and paralleled negative samples were
103	processed separately with any biological tissue sample in the same batch to specifically
104	avoid the introduction of contaminant DNA. The specific primers for quantitative-PCR
105	are shown in Table S5.

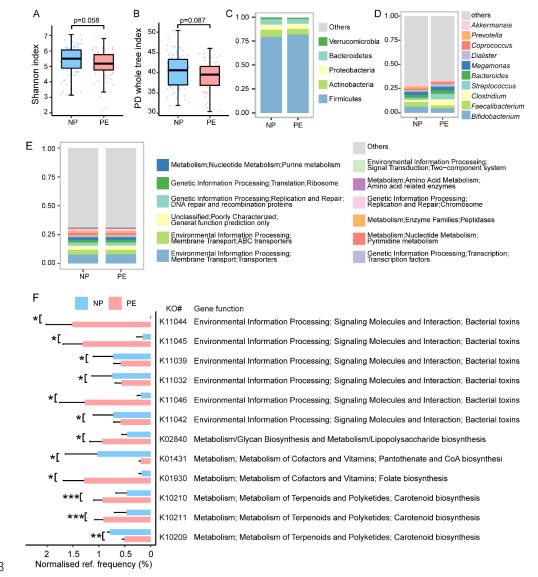
106 Histological procedures

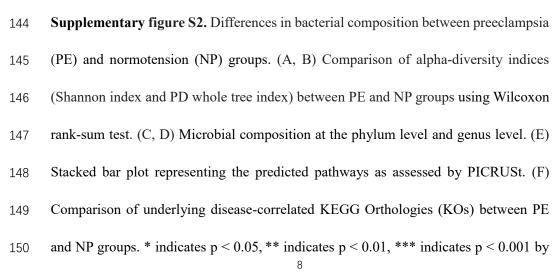
107 The implantation site (uterus and placenta), kidneys, colon, and ileum were fixed and 108 processed. Briefly, the tissues were fixed, dehydrated, infiltrated, embedded in paraffin, 109 and sliced into 4-µm serial sections. At each implantation site, one set of sections

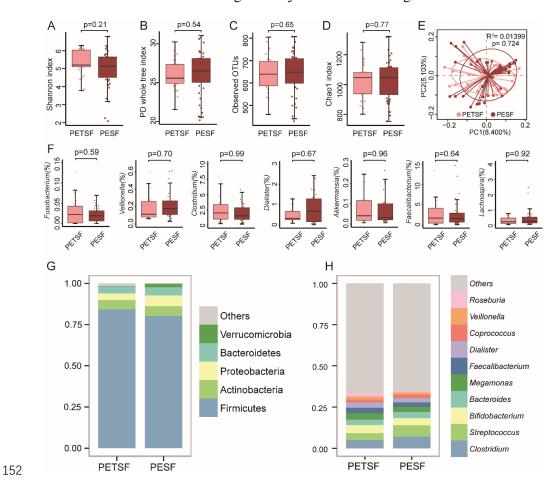
containing a central maternal arterial channel was selected for staining. Hematoxylin
and eosin (HE) staining was performed and analyzed by microscopy.
Immunohistochemistry were performed using primary antibodies for ZO-1, ZO-2,
occluding, and claudin-4 (Abcam, Cambridge, UK) as described previously.² Sections
were examined by a qualified and blinded pathologist to evaluate the degree of
pathological changes.


116 **Isolation of lymphocytes**

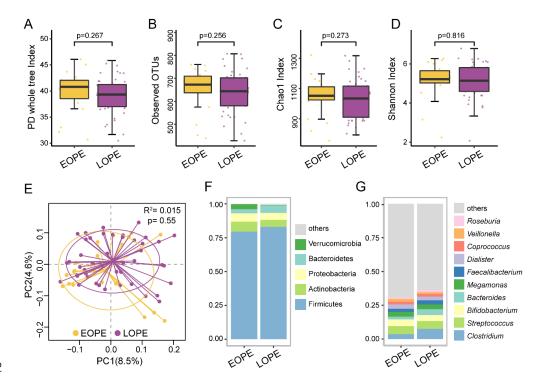
To prepare single-cell suspensions of small intestinal lamina propria lymphocytes (siLPLs), the intestines were gently washed to remove the fecal content and epithelial layers, and then incubated with collagenase IV to isolate lymphocytes. Lymphocytes were passed through a 40-μm mesh, and then further enriched by Percoll densitygradient centrifugation. Splenocyte single-cell suspensions were obtained using 70-μm strainers, followed by erythrocyte lysis and subsequent filtering through a 40-μm mesh.

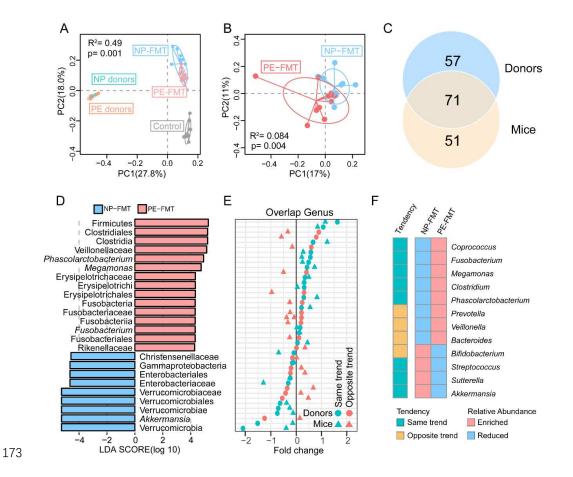

123 **Quantitative real-time PCR**


Quantitative real-time PCR was carried out on an ABI Q5 real-time PCR system with the following cycling protocol: one cycle at 95°C for 10 min, followed by 40 cycles of 95°C for 15 s, and 60°C for 60 s. Relative expression was calculated using the comparative threshold cycle and expressed relative to control ($\Delta\Delta$ CT method). The levels of 18S RNA were used for data normalization.

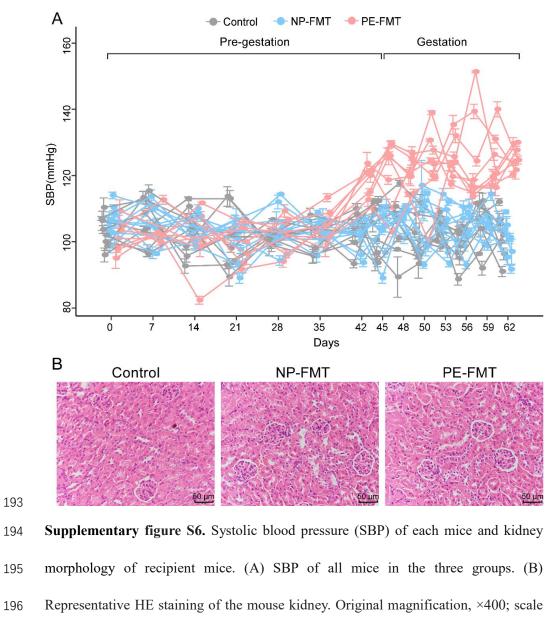

129 Supplementary figures S1-S10

131 Supplementary figure S1. Gating strategies for regulatory T (Treg) and Helper 17 T 132 (Th17) cells. Treg and Th17 cells were defined as the co-expression of CD4⁺ CD25⁺ 133 Foxp3⁺ and CD4⁺ IL-17A⁺, respectively. Sequential gating was used to quantify the percentage of Treg and Th17 cells among CD4+ T cells. Lymphocyte population was 134 135 gated from single-cell suspensions according to forward scatter (FSC) characteristics 136 and side scatter (SSC) characteristics. To identify Th17 cells, the lymphocytes were 137 then gated on CD4 and IL-17A double-positive cells based on fluorescence minus one 138 (FMO) controls missing IL-17A and CD4 antibodies. To detect Treg cells, the gated 139 lymphocytes were further characterized by the expression of CD4. Afterward, the 140 cells were gated by co-expression of CD25 and FoxP3. FMO controls for FoxP3 and 141 CD25 were used to determine the quadrant position and fluorescence intensity for 142 subsequent analysis.

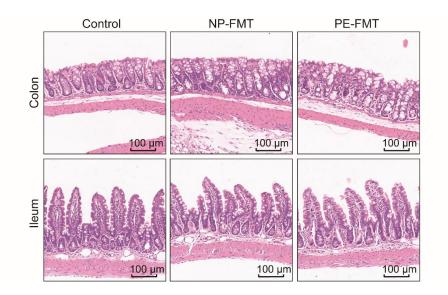



151 Wilcoxon rank-sum test following the Benjamini and Hochberg method.

153 Supplementary figure S3. Comparison of gut microbiota between different clinical 154 phenotypes. (A-D) Box plot of alpha-diversity indices comparing preeclampsia without 155 severe feature (PETSF) and preeclampsia with severe feature (PESF) groups using 156 Wilcoxon rank-sum test. (E) Principal coordinate analysis (PCoA) based on unweighted 157 UniFrac distances for bacterial sequences between different clinical phenotypes by 158 PERMANOVA (Adonis). The eigenvalues of axe PC1 and PC2 were 0.74 (8.400%) and 0.43 (5.103%), respectively. (F) Relative abundances of selected genera between 159 160 PETSF and PESF groups using Wilcoxon rank-sum test. (G, H) Microbial composition 161 at the phylum level and genus level of different clinical phenotypes.

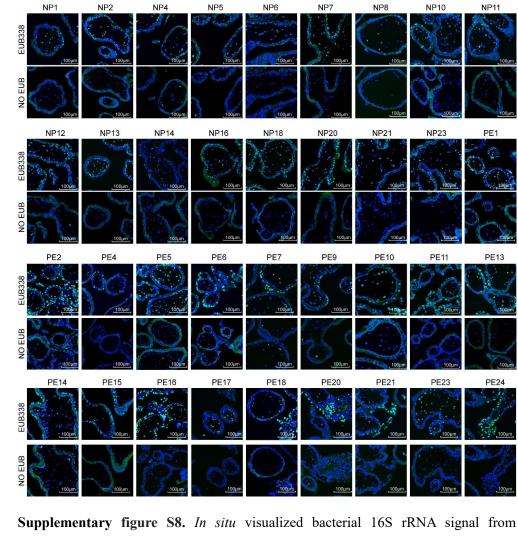

Supplementary figure S4. Profile of gut microbiome composition between early-onset 163 164 preeclampsia (EOPE) and late-onset preeclampsia (LOPE) groups. (A-D) Comparison 165 of alpha-diversity indices between EOPE and LOPE using Wilcoxon rank sum test. (E) 166 Principal coordinate analysis (PCoA) based on unweighted UniFrac distances for 167 bacterial sequences obtained from fecal samples of EOPE and LOPE patients. The 168 eigenvalues of axe PC1 and PC2 were 0.68 (8.5%) and 0.41 (4.6%), respectively. 169 Difference in beta-diversity were tested by PERMANOVA (Adonis). (F, G) Average 170 relative abundances of predominant taxa at the phylum level and genus level in the 171 EOPE and LOPE groups.

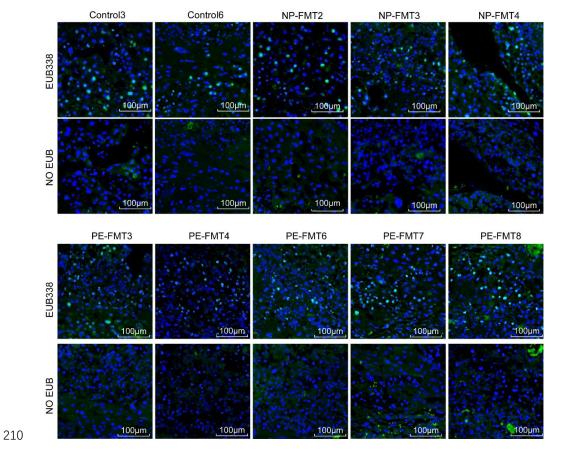
172



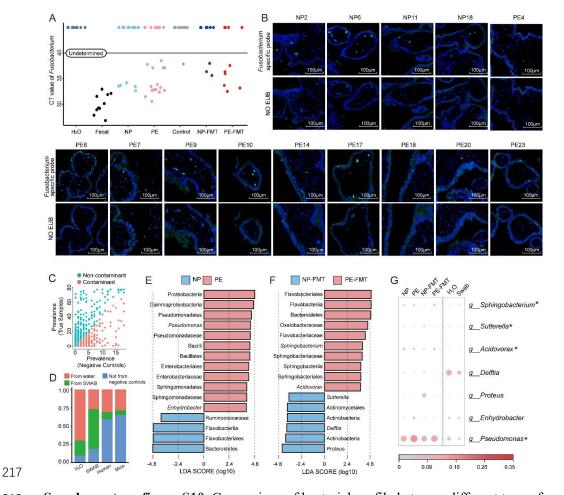
174 Supplementary figure S5. Post-transplanted intestinal microbial profiles of recipient 175 mice. (A) Principal coordinate analysis (PCoA) plots of human donors and recipient mice based on unweighted UniFrac distance matrices. The eigenvalues of axe PC1 and 176 177 PC2 were 1.79 (27.8%) and 1.16 (18.0%), respectively. (B) PCoA plots of recipient mice based on unweighted UniFrac distance matrices separate PE-FMT group from the 178 179 and NP-FMT group. The eigenvalues of axe PC1 and PC2 were 0.41 (17%) and 0.26 180 (11%), respectively. (C)Venn diagram comparing the shared genera number in the gut 181 microbiome of human donors and recipient mice. (D) Linear discriminant analysis 182 effect size (LEfSe) analysis identified different taxa between NP-FMT and PE FMT groups. The LDA scores (log10) > 4.0 are listed. (E) Concordance of genus variations 183

184	between the intestinal microbiota of human donors and recipient mice. The shared
185	genera were compared between donors and recipient mice. Circular points represent
186	genera of human donors' microbiota, and triangle points represent recipient mice's
187	microbiota. Blue points denote genera varying by the same trend, whereas red points
188	denote the opposite trend. (F) Heat map comparing the abundance of altered genera
189	between human donors and recipient mice. Red, more abundant; blue, less abundant.
190	Genera present consistent trend with the variation in the human donors are marked with
191	green points, while those that were inconsistent are marked with yellow points.
192	Difference in beta-diversity were tested by PERMANOVA (Adonis) in (A, B).


197 bar = 50 μ m.


200 Supplementary figure S7. Intestinal morphology of recipient mice. Representative HE

staining of the ileum and colon tissues (original magnification, $\times 200$; scale bar = 100


202 μm).

Supplementary figure S8. *In situ* visualized bacterial 16S rRNA signal from normotension (NP) and preeclampsia (PE) placentas. Placental tissue sections were probed with universal eubacterial probe EUB338 (green) and paired with scrambled probe NOEUB. Each image pair is of a separate placenta, with 1 for each of the 18 of 222 NP placentas and 20 of 24 PE placentas examined for which a bacterial 16S rRNA signal was observed. Original magnification, \times 200; scale bar = 100 µm.

Supplementary figure S9. *In situ* visualized bacterial 16S rRNA signal from recipient mice. Visualized bacterial signals were observed in the junction layer of the placenta (6 of 8 in PE-FMT placentas, 4 of 8 in NP-FMT placentas, and 3 of 8 placentas of control mice). Each image pair is of a separate placenta, with 1 for each of the placentas examined where bacterial 16S rRNA signal was observed. Original magnification, $\times 200$; scale bar = 100 μ m.

218 Supplementary figure S10. Comparison of bacterial profile between different type of samples. (A) Quantitative-PCR analysis of the presence of genes from Fusobacterium 219 220 in the samples studied Values shown are the cycle of threshold (CT) of each sample. 221 The limit of detection is a CT level of 40 (horizontal line). Samples with no detectable 222 signal are shown above the line. (Statistical comparison between NP and PE placenta, 223 X-squared = 4.6235, p < 0.05 by Pearson's Chi-squared test; comparison between PE-224 FMT, NP-FMT and control placenta, p = 0.08 by Fisher's exact test). (B) In situ visualized Fusobacterium 16S rRNA signal from normotension (NP) and preeclampsia 225 (PE) placentas. Each image pair is of a separate placenta, with 1 for each of the 4 of 22 226 NP placentas and 10 of 24 PE placentas examined where Fusobacterium 16S rRNA 227 17

228	signal was observed. Original magnification, $\times 200$; scale bar = 100 μ m. (C) Prevalence
229	plot of OTUs statistically determined to be noncontaminants or contaminants as
230	determined by the decontam isContaminant and isNotContaminant function. A total of
231	1221 OTUs were found to have statistical support indicating that they represent true
232	OTUs. Red points denote OTUs determined to be contaminants, whereas blue points
233	denote OTUs determined to be non-contaminants. (D) Stacked bar plot representing the
234	source of bacteria identified in each sample using SourceTracker. The proportions of
235	OTUs from the different sources are displayed in colors. Red and green bars represent
236	proportions from DNA-free water during the experiment and sterile swab during
237	placenta sampling respectively, while OTUs not from negative controls are in blue.
238	SourceTracker uses a Bayesian approach to predict the proportion of each sequence or
239	OTU in each sample arising from source environments. (E, F) LEfSe identifies the
240	different taxa between normotension and PE placenta, and NP-FMT and PE-FMT
241	placenta. (G) The abundance of genus identified by LEfSe shown for the placenta
242	sample groups and negative control groups. The asterisk indicates a significantly
243	enriched relative abundance of bacteria in the placenta samples. Wilcoxon rank sum
244	test following Benjamini and Hochberg FDR procedure was performed between
245	bacteria in placentas and negative controls (* indicates $p < 0.05$).

246 Supplementary tables S1-S6

Supplementary table S1. Characteristics of the study cohort (Mean±SD or N/N (%/%))				
	Supplementar	g tabla 61. Chanaatanist	iog of the study achort (N	$M_{0,0,0} \perp SD_{0,0} = N/N (0/ (0/))$
	Subbiementary	V ladie ST. Characterist	ics of the study conort in	VIEADITSID OF $ N N 70 7011$

Characteristics	NP	PE	D		PE-sub	group	
Characteristics	NP	PE	P-value	PETSF	PESF	Early onset	Late onset
Ν	85	67		27	40	21	46
Age (y)	28.52±4.33	30.16±5.84	P=0.056	29.67±4.95	30.5±6.41	31.14±6.44	29.72±5.56
Gestational age (w)	38.1 ± 2.5	34.96±3.27	p<0.001	37.4+1.5	33.3+3.1	30.8+1.7	36.9+1.7
Weight (kg)	69.11±8.10	78.07±13.18	p<0.001	79.35±13.15	76.83±13.34	76.46±12.61	78.64±13.49
BMI (kg/m ²)	26.98±2.94	30.52±4.62	p<0.001	30.59±4.12	30.46±5.13	30.23±4.66	30.63±4.66
SBP (mmHg)	120.73±9.64	159.6±11.69	p<0.001	151.89±6.27	$164.72{\pm}11.7$	168.29±12.22	155.57±9.06
DBP (mmHg)	71.71±6.76	100.1±9.51	p<0.001	96.67±6.9	102.47±10.36	$103.05{\pm}10.65$	$98.8 {\pm} 8.74$
Proteinuria (-,+,++,+++,++++)	62/16/5/2/0	1/11/13/22/20	p<0.001	0/7/5/15/0	1/4/8/7/20	1/3/5/4/8	0/8/8/18/12
Edema (-,+,++,+++)	84/0/1/0	33/17/10/7	p<0.001	16/7/4/0	17/10/6/7	9/4/5/3	24/13/5/4
Neoweight (kg)	3.20±0.54	$2.60{\pm}0.92$	p<0.001	3.18±0.57	2.11 ± 0.88	$1.4{\pm}0.53$	$2.94{\pm}0.7$
AT_III (µg/L)	94.8±12.15	86.77±14.74	p<0.01	89.15±12.46	84.94±16.22	83.53±14.93	88.05±14.65
ALT (U/L)	11.69 ± 4.88	22.79 ± 30.50	p<0.01	13.41±7.52	29.12±37.87	31.86±22.48	18.65 ± 32.92
AST (U/L)	18.12 ± 4.46	28.31±31.47	p<0.01	20±6.1	33.92±39.64	32.43 ± 20.85	26.43±35.33
Cr (µmol/L)	43.33±7.53	55.71±13.90	p<0.001	50.41±10.13	59.47±15.08	59.61±14.58	54.1±13.45
TT (s)	12.63 ± 0.72	13.52±1.67	p<0.001	$13.04{\pm}1.11$	13.86±1.92	13.73±1.54	13.43 ± 1.73
ALB (g/L)	38.76±2.25	34.68±4.24	p<0.001	35.81±2.57	33.88±4.99	33.05±5.55	35.35±3.42
TP (s)	$65.94{\pm}4.05$	61.05±6.26	p<0.001	62.93±4.57	59.71±6.98	58.21±7	62.22±5.6
Hemorrhage (ml)	366.17±103.09	422.37±144.91	p<0.05	463.33±185.14	387.81 ± 88.58	425±110.15	421.63±154.36
HDL(mmol/L)	$1.80{\pm}0.45$	1.75 ± 0.45	p=0.461	1.68 ± 0.42	1.8 ± 0.47	1.77 ± 0.48	$1.74{\pm}0.44$
LDL(mmol/L)	$2.60{\pm}0.95$	2.61±1.19	p=0.953	2.43 ± 1.18	2.74±1.19	2.73 ± 0.89	2.57±1.3
Triglyceride (mmol/L)	3.49±1.20	5.0±3.28	p<0.001	5.01±3.07	4.99±3.45	4.11 ± 1.88	5.36±3.66

	PLT (×10 ⁹)	221.2±55.3	217.9±74.5	p=0.764	232.3±56.7	207.6±84.2	178.3±67.0	234.2±71.9
248	NOTE: Differences in ch	aracteristics between	PE group and NF	group were e	evaluated, using S	Student's t-test or	χ2 test. Abbrevi	ations: N, sample
249	size; SD, standard devi	ation; NP, normoten	sive pregnant wo	omen; PE, pro	eeclampsia; PET	SF, preeclampsia	without severe	features; PESF,
250	preeclampsia with severe	e features; BMI, body	y mass index; SBI	P, systolic bloo	od pressure; DBP	, diastolic blood j	pressure; AT-III,	antithrombin III;
251	ALT, alanine aminotrans	ferase; AST, Aspartat	e aminotransferas	se; Cr, creatini	ne; TT, thrombin	time; ALB, albu	min; TP, total pr	otein; HDL, high
252	density lipoprotein; LDL	, low density lipopro	tein; PLT, blood p	latelet.				

Characteristics	NP	PE	P-value
N	22	24	
Age (y)	29.05±4.51	30.75±6.22	p=0.29
Gestational age (w)	37.8±2.4	32.6±2.9	< 0.001
Weight (kg)	67.4±7.68	73.59±14.1	p=0.12
BMI (kg/m^2)	25.58±2.69	29.03±5.2	p=0.02
SBP (mmHg)	119.82±9.91	162.75±10.23	p<0.001
DBP (mmHg)	70.5±6.95	103.88±10.66	p<0.001
Proteinuria (-,+,++,+++)	19/1/2/0/0	1/2/4/4/13	p<0.001
Edema (-,+,++,+++)	22/0/0/0	12/6/2/4	p<0.001
Neoweight (kg)	3.38±0.49	$1.88{\pm}0.64$	p<0.001
AT III (µg/L)	94.23±11.61	83.48±15.39	p=0.01
ALT (U/L)	10.73±3.94	22.96±19.15	p<0.01
AST (U/L)	18.09 ± 5.68	27.54±14.72	p<0.01
Cr (µmol/L)	41.27±7.63	59.52±13.72	p<0.001
TT (s)	12.48 ± 0.68	13.72±1.93	p<0.01
ALB (g/L)	38.72±1.99	34.43±4.45	p<0.001
TP (s)	65.96±3.67	60.8±6.61	p<0.01
Hemorrhage (ml)	342.89±75.49	387.22±95.83	p=0.13
HDL(mmol/L)	1.97 ± 0.5	1.85 ± 0.38	p=0.37
LDL(mmol/L)	2.6±1.05	$2.83{\pm}1.18$	p=0.50
Triglyceride (mmol/L)	3.63±1.2	5.11±4.19	p=0.12
PLT (×10 ⁹)	203.9±41.5	223.7±91.6	0.337
NOTE: Differences in	n characteristics b	etween PE and Normoten	sion group were

253 Supplementary table S2. Characteristics of the donors of placenta (Mean±SD or N/N(%/%))

NOTE: Differences in characteristics between PE and Normotension group were
evaluated, using Student's t-test or χ2 test. Abbreviations: N, sample size; SD, standard
deviation; NP, normotensive pregnant women; PE, preeclampsia; BMI, body mass
index; SBP, systolic blood pressure; DBP, diastolic blood pressure; AT-III, antithrombin
III; ALT, alanine aminotransferase; AST, Aspartate aminotransferase; Cr, creatinine; TT,
thrombin time; ALB, albumin; TP, total protein; HDL, high density lipoprotein; LDL,
low density lipoprotein; PLT, blood platelet.

		NP			PE			
Characteristics	Health.H042.B	Health.H043.B	Health.H082.B	PIH.P132.B	PIH.P136.B	PIH.P149.B		
Age (y)	28	25	25	27	29	26		
Gestational age (w)	38.3	38.4	39	39.4	40.2	32		
BMI (kg/m ²)	27.82	25.81	34.13	36.11	25.53	34.41		
SBP (mmHg)	106	102	111	158	152	183		
DBP (mmHg)	60	63	69	101	104	124		
Proteinuria (-,+,++,+++)	+	0	0	+++	++	++		
Edema (-,+,++,+++)	0	0	0	++	0	++		
Neoweight (kg)	3.1	3.4	3.95	3.6	3.1	1.78		
AT_III (µg/L)	86	99	89	90	88	70		
ALT (U/L)	8	10	8	17	11	43		
AST (U/L)	10	15	13	23	22	3		
Cr (µmol/L)	43	44	52	67	49	87		
TT (s)	13.6	12.5	11.9	13.1	12.7	13.4		
ALB (g/L)	36.9	36.9	39.6	33.7	39	26.2		
TP (s)	64.9	60.1	68.5	56.5	67.3	53.9		
Hemorrhage (ml)	315	315	315	515	1315	315		
HDL(mmol/L)	1.53	1.65	1.88	1.56	1.51	3.14		
LDL(mmol/L)	1.89	2.46	2.72	1.38	4.96	3.19		
PLT (×10 ⁹)	253	192	207	185	213	202		

262 NOTE: Abbreviations: NP, normotensive pregnant women; PE, preeclampsia; BMI, body mass index; SBP, systolic blood pressure; DBP,

263 diastolic blood pressure; AT-III, antithrombin III; ALT, alanine aminotransferase; AST, Aspartate aminotransferase; Cr, creatinine; TT, thrombin

time; ALB, albumin; TP, total protein; HDL, high density lipoprotein; LDL, low density lipoprotein; PLT, blood platelet.

Gut

ementary table S4. Gro FMT treatment	group name	er of the mice involve NO. of cage	d in the study NO. of mice
	8	~	C49
	- control -	Cage 1	C56
		~ •	C53
PBS		Cage 2	C15
		a a	C51
		Cage 3	C38
		~ •	C13
		Cage 5	C19
		Cage 6	H9
	- NP-FMT		H7
		Cage 7	H4
		Cage 8	H10
fecal supensant nixture from three			H34
NP donors			H8
INF dollors	_	Care	H26
	-	Cage 9	H54
		G 10	H17
		Cage 10	H23
		Case 11	P22
		Cage 11	P37
C 1 (PE-FMT -	G 12	P55
fecal supensant mixture from three PE donors		Cage 12	P41
		G 12	P30
		Cage 13	P52
	-	0 15	P32
		Cage 15	P63

265 Supple

NOTE: Abbreviations: FMT, fecal microbiota transplantation; NP, normotensive 266

267 pregnant women; PE, preeclampsia; PBS, phosphate buffer saline.

268

Gut

Supplementary material

Gene	Primer	Sequence(5' to 3')	
16sRNA	Forward	GTGSTGCAYGGYTGTCGTCA	
IOSKINA	Reverse	ACGTCRTCCMCACCTTCCTC	
	Forward	GGATTTATTGGGCGTAAAGC	
Fusobacterium	Reverse	GGCATTCCTACAAATATCTACGAA	
18sRNA	Forward	AGTCCCTGCCCTTTGTACACA	
	Reverse	CGATCCGAGGGCCTCACTA	
Tjp1	Forward	ACCCGAAACTGATGCTGTGGATAC	
	Reverse	AAATGGCCGGGCAGAACTTGTGT	
Tjp2	Forward	TGCAATTCCAAATCCAAACC	
	Reverse	GTGATTTTCTTCAACCCGGA	
o coludin	Forward	CCCAGGCTTCTGGATCTATGT	
occludin	Reverse	TCCATCTTTCTTCGGGTTTTTCA	
claudin4	Forward	TGATTATGGTGCCCGTGTCC	
	Reverse	CGAGTAGGGCTTGTCGTTGC	
116	Forward	TGATGCACTTGCAGAAAACA	
	Reverse	ACCAGAGGAAATTTTCAATAGGC	
1110	Forward	TGTGAAATGCCACCTTTTGA	
Π1β	Reverse	GGTCAAAGGTTTGGAAGCAG	
C_{a}	Forward	ACCATGACACTCTGCAACCA	
Ccl3	Reverse	GTGGAATCTTCCGGCTGTAG	
Ccl4	Forward	CATGAAGCTCTGCGTGTCTG	
CCl4	Reverse	GAAACAGCAGGAAGTGGGAG	
Cxcl1	Forward	CCACACTCAAGAATGGTCGC	
	Reverse	TCTCCGTTACTTGGGGACAC	
Vegf	Forward	TTACTGCTGTACCTCCACC	
	Reverse	ACAGGACGGCTTGAAGATG	

269

tabl S5 D.... л : ·•. . C

270

271

272	Supplementary table S6. Probes used in In Situ Hybridization				
	Probe name	Sequence(5' to 3')			
	EUB338I	GCTGCCTCCCGTAGGAGT			
	EUB338II	GCAGCCACCCGTAGGTGT			
	EUB338III	GCTGCCACCCGTAGGTGT			
	NOEUB	ACTCCTACGGGAGGCAGC			
	Fusobacterium	CTAATGGGACGCAAAGCTCTC			

274 **Reference**

275	1. He Y. Wu W.	Zheng HM. et a	al. Regional variat	tion limits applications	of healthy gut
210	1.110 1, 1.4 1.,		an itegional valla	applications	or neuring gat

- 276 microbiome reference ranges and disease models. *Nat Med* 2018;24:1532-1535.
- 277 2. Hu J, Luo H, Wang J, et al. Enteric dysbiosis-linked gut barrier disruption triggers
- early renal injury induced by chronic high salt feeding in mice. Exp Mol Med
- 279 2017;49:e370.