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Significance of this study

What is already known on this subject?
►► Bariatric surgery, particularly the malabsorptive 
type, alters the gut microbiota and host 
metabolism.

►► Pregnancy following bariatric surgery, especially 
a malabsorptive procedure, is associated with 
a reduced prevalence of maternal gestational 
diabetes and increased prevalence of small for 
gestational age babies.

What are the new findings?
►► We demonstrated that malabsorptive surgery-
induced changes in the maternal gut microbiota 
persist throughout pregnancy compared with 
pregnancies with similar maternal body mass 
index but no history of such surgery, and may 
have a trans-generational impact.

►► Gut microbial changes in malabsorptive 
patients are associated with increased 
excretion of protein putrefaction metabolites 
during pregnancy.

How might it impact on clinical practice in the 
foreseeable future?

►► The impact of maternal malabsorption on 
fetal health warrants further investigation to 
determine the most appropriate type of weight 
loss surgery for women of reproductive age.

Abstract
Objective  Due to the global increase in obesity rates 
and success of bariatric surgery in weight reduction, an 
increasing number of women now present pregnant with 
a previous bariatric procedure. This study investigates 
the extent of bariatric-associated metabolic and gut 
microbial alterations during pregnancy and their impact 
on fetal development.
Design  A parallel metabonomic (molecular phenotyping 
based on proton nuclear magnetic resonance 
spectroscopy) and gut bacterial (16S ribosomal RNA 
gene amplicon sequencing) profiling approach was 
used to determine maternal longitudinal phenotypes 
associated with malabsorptive/mixed (n=25) or 
restrictive (n=16) procedures, compared with women 
with similar early pregnancy body mass index but 
without bariatric surgery (n=70). Metabolic profiles of 
offspring at birth were also analysed.
Results  Previous malabsorptive, but not restrictive, 
procedures induced significant changes in maternal 
metabolic pathways involving branched-chain and 
aromatic amino acids with decreased circulation of 
leucine, isoleucine and isobutyrate, increased excretion of 
microbial-associated metabolites of protein putrefaction 
(phenylacetlyglutamine, p-cresol sulfate, indoxyl sulfate and 
p-hydroxyphenylacetate), and a shift in the gut microbiota. 
The urinary concentration of phenylacetylglutamine was 
significantly elevated in malabsorptive patients relative 
to controls (p=0.001) and was also elevated in urine of 
neonates born from these mothers (p=0.021). Furthermore, 
the maternal metabolic changes induced by malabsorptive 
surgery were associated with reduced maternal insulin 
resistance and fetal/birth weight.
Conclusion  Metabolism is altered in pregnant women 
with a previous malabsorptive bariatric surgery. These 
alterations may be beneficial for maternal outcomes, 
but the effect of elevated levels of phenolic and indolic 
compounds on fetal and infant health should be 
investigated further.

Introduction
Currently more than a third of women are classi-
fied as overweight or obese1 with obesity reaching 
epidemic levels globally. Obesity is associated with 
a number of adverse metabolic effects resulting 
in cardiovascular disease, metabolic syndrome, 
diabetes and cancer.2 Bariatric surgery (BS) 
has proven a successful treatment modality for 
lasting weight loss and has been shown to reduce 

obesity-related morbidity and mortality.3 4 Altered 
bile flow, reduction in gastric capacity, anatom-
ical gut rearrangement and altered nutrient flow, 
vagal manipulation and modulation of enteric gut 
hormones, collectively referred to as the BRAVE 
effects,3 5 have been proposed to contribute to the 
mechanisms of weight loss and diabetes resolution 
in bariatric patients. There are two main types of 
BS: the restrictive (RES) procedures such as gastric 
banding and sleeve gastrectomy, which reduce the 
stomach size, and the malabsorptive/mixed (MAL) 
type, such as bilio-pancreatic diversion and Roux-
en-Y-gastric bypass, which aim to decrease caloric 
absorption.6 BS has been shown to impact metabolic 
profiles reflecting altered metabolism and changes 
in the gut microbiome that play a role in improved 
lipid and glucose metabolism.7–11 The contribu-
tion of the gut mictobiota to host metabolism and 
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metabolic control is well-established. Microbes degrade dietary 
components that are undigested by the host, convert dietary 
molecules into bioactive metabolites, influence host response 
to drugs and participate in many homeostatic processes and 
signalling pathways.12 13 However, the mechanisms by which BS 
confers metabolic benefit and the potential role of the micro-
biome in achieving this are poorly understood.

Evidence continues to accumulate that pregnancy post-BS is 
associated with lower prevalence of gestational diabetes mellitus 
(GDM) and large for gestational age neonates but higher risk 
of small for gestational age neonates and late preterm delivery 
compared with pregnancies in obese women without a previous 
BS.14 To investigate the impact of previous BS on maternal pheno-
type during pregnancy, we adopted a longitudinal metabolic 
(serum and urine) and gut bacterial (faeces) profiling strategy using 
proton nuclear magnetic resonance (1H NMR) spectroscopy and 
16S rRNA gene amplicon sequencing, respectively, to characterise 
women with previous BS (RES and MAL) throughout the course 
of their pregnancy. Profiles were compared against women with 
similar early pregnancy body mass index (BMI) and no history of 
BS (NBS). For a subset of the cohort, we also characterise neonatal 
cord serum and urine metabolomes to assess potential trans-
generational metabolic effects of BS.

Methods
Study population, sampling and clinical data
The population is part of an ongoing prospective cohort study 
investigating the impact of maternal BS on perinatal outcomes. 
All women gave written, informed consent for their data and 
samples to be used. Pregnant women with (n=47) and without 
(n=118) previous BS were recruited from May 2015 to April 
2017 at Chelsea and Westminster Hospital (London, UK) as 
previously described.15 Women were seen at five time points 
during pregnancy (T1: 11+0–14+0, T2: 20+0–24+0, T3: 28+0–
30+0, T4: 30+0–33+0 and T5: 35+0–37+6 weeks gestation) and 
within 72 hours of delivery (T6). Maternal blood (serum) and 
urine samples were collected at each visit while faecal samples 
were requested at the T1, T2 and T4 visits (see online supple-
mentary figure S1 and table S1). A full oral glucose tolerance 
test (2 hour, 75 g) was conducted at T3 and maternal insulin 
resistance was calculated using the homeostatic model assess-
ment for insulin resistance (HOMA-IR=fasting serum insulin 
(µU/L) × fasting glucose (mmol/L)/22.5). Estimated fetal weight 
was calculated by trans-abdominal ultrasound scans at T2, T4 
and T5. At T6, birth weight was recorded, percentiles for the 
gestation were calculated and, where possible, neonatal samples 
(cord serum and urine) were collected. All samples were stored 
at −80°C for future analysis. For the study population, women 
with diagnosis of type 2 diabetes mellitus or GDM (due to the 
effect of diabetes on the metabolic profile) and those that had a 
miscarriage were excluded. Only NBS participants with a BMI 
of 25–50 kg/m2 at T1 were included to match the BMI range of 
the included bariatric patients at T1.

Metabolic profiling of biofluid samples
Serum and urine samples were prepared according to an estab-
lished protocol.16 1H NMR spectra were acquired on a Bruker 
600 MHz spectrometer (Bruker BioSpin) following a published 
method16 (see online supplementary methods for further detail). 
Methodology for preprocessing of spectral data is described in 
online supplementary methods. Multivariate modelling of the 
spectral data was performed in the software package SIMCA 
V.14.1 (Sartorius Stedim Biotech). Principal component analysis 

(PCA) was used to assess variation in metabolic profiles over 
all time points and to identify extreme outliers to exclude from 
supervised models for each time point. Orthogonal partial least 
squares discriminant analysis (OPLS-DA) was used to identify 
spectral variables (relating to specific chemical compounds) 
that contributed to discrimination of clinical classes (pairwise 
comparisons between NBS, MAL and RES groups) at each 
time point. From the discriminatory NMR peaks, metabo-
lite identities were confirmed using statistical tools,17 18 2D 
NMR experiments and by spiking in authentic standards (see 
online supplementary methods). Relative concentrations of 
each discriminatory metabolite were calculated by integrating a 
representative peak of that metabolite. Downstream analysis was 
performed in the R software environment.19 For each discrimi-
natory metabolite identified in the cross-sectional analysis, time 
series curves were generated through a spline-fitting method 
implemented in ‘santaR’ (see online supplementary methods) 
to visualise their behaviour in different groups over the preg-
nancy time course. Individuals with at least five data points were 
included. Correlation analysis including partial correlation to 
adjust for confounders is detailed in the online supplementary 
methods along with a list of all R packages used. Missing data 
were excluded from calculations. All p values were adjusted (padj) 
where necessary to control for the false discovery rate according 
to the Benjamini-Hochberg method.20 An alpha of 0.05 was used 
for p and padj values.

Gut bacterial community profiling
Stool samples were randomised for processing and DNA was 
extracted (see online supplementary methods) using the Power-
Lyzer PowerSoil DNA Isolation Kit (Mo Bio). 16S rRNA gene 
amplicon sequencing targeting the V1-V2 regions was performed 
on the Illumina MiSeq platform as previously described.21 Raw 
reads were processed in the R software environment19 following 
a published workflow22 which includes amplicon denoising imple-
mented in ‘DADA2’.23 See online supplementary methods for full 
details. Functions in the ‘vegan’ R package were used to calculate 
Shannon Diversity Indices (α-diversity) on data rarefied to the 
minimum sequencing depth and Bray-Curtis dissimilarity (β-di-
versity) on log-transformed data (pseudocount of 1 added to each 
value). Significance of group separation in β-diversity was assessed 
by permutational multivariate analysis of variance. Changes in rela-
tive abundance were tested at each taxonomic rank from phylum 
to genus using the Mann-Whitney U test while differentially abun-
dant 16S rRNA gene sequences were identified using ‘DESeq2’.24 
For ‘DESeq2’ analysis, data were pooled for each individual rather 
than analysing distinct time points.

Integrative analysis of metabolic and taxonomic data
Relationships between the serum, urine and faecal data sets were 
modelled using the DIABLO method in ‘mixOmics’.25 This is a 
multi-block latent variable-based approach which aims to identify 
concordance between multiple data sets. Metabolites significant 
throughout the time course (serum: leucine, isoleucine, isobu-
tyrate, d-β-hydroxybutyrate; urine: phenylacetylglutamine (PAG), 
p-cresol sulfate (PCS), indoxyl sulfate (IS), p-hydroxyphenylacetate 
(PHPA), unknown, α-ketoisovalerate, creatinine) and a subset of 
bacterial genera (log-transformed; selected using the least absolute 
shrinkage and selection operator (LASSO) penalisation method 
implemented in ‘mixOmics’) were modelled. Sampling points for 
each individual, where matching microbiome and metabolite data 
were obtained (T1, T2 and T4), were included in the model.
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Figure 1  Modelling of metabolite concentrations. (A) Time series analysis of discriminatory metabolites with lines representing group mean curves 
while shaded areas denote 95% confidence bands. Malabsorptive (MAL, blue) patients relative to No bariatric surgery (NBS, purple) controls. (B) 
Relative concentration of phenylacetylglutamine (PAG) is increased in neonatal urine from the MAL group compared with the NBS or restrictive (RES) 
groups. NMR peak integrals are reported in arbitrary units (a.u.). *P<0.05 (Mann-Whitney U test); GlycA, N-acetyl glycoprotein; IS, indoxyl sulfate; 
PCS, p-cresol sulfate; PHPA, p-hydroxyphenylacetate.

Results
Characteristics of the study participants
Of the 165 women enrolled in the study, 54 were excluded from 
longitudinal profiling due to BMI (n=36), diagnosis of diabetes 
(n=16), miscarriage (n=1) or withdrawal from the study (n=1). 
The final study population included 111 women (NBS n=70, 
RES n=16, MAL n=25) who contributed 491 maternal urine, 
394 maternal blood, 68 maternal stool (online supplementary 
figure S1), 54 cord blood and 28 neonatal urine samples (online 
supplementary table S1). Two women (RES n=1, MAL n=1) 
contributed only neonatal samples. All women in the MAL 
group had a previous gastric bypass while the RES group had 
gastric banding (n=8) or sleeve gastrectomy (n=8). Maternal 
demographics, pregnancy characteristics and outcomes of the 
study population (online supplementary table S2) were consis-
tent with our earlier report.15 Compared with the NBS group, 
women with a previous BS were on average 3.7 years older and, 
especially those with a MAL procedure, had lower insulin resis-
tance at T3 and delivered smaller babies earlier (online supple-
mentary table S2). Among the BS group, women with a previous 
MAL procedure had a higher pre-surgery BMI compared with 
those with a previous RES procedure.

Metabolic differences in maternal and neonatal serum 
metabolomes associated with bariatric surgery
Clear differences between the serum metabolic profiles of MAL, 
but not RES, participants and NBS participants were detected in 
the third trimester of pregnancy (time points T4 and T5; online 
supplementary table S3) as evidenced by the OPLS-DA models. 
The serum metabolic profiles associated with BS at the time 
of labour and in the first and second trimesters could not be 
differentiated from the control group. Serum samples obtained 
from MAL patients contained lower concentrations of unsatu-
rated lipids (CH=CH, δ 5.31 (m)) at T5 and the lipids group 
corresponding to C=CCH2C=C (δ 2.79 (m)) at both T4 and T5 
(online supplementary figure S2) compared with the NBS group. 
Other metabolic differences between the MAL and NBS groups 
included (online supplementary table S4) N-acetyl glycoprotein 
(GlycA), leucine, isoleucine, isobutyrate (decreased in MAL) 
and glutamine, d-β-hydroxybutyrate (increased in MAL). The 
behaviour of these metabolites throughout the pregnancy period 
was investigated further using time series analysis to model 
individual metabolites. Serum leucine, isoleucine and isobu-
tyrate concentrations were significantly lower in MAL (n=12; 
NBS n=34) throughout the time course (figure  1A), whereas 
increases in d-β-hydroxybutyrate were associated with the last 
few weeks of pregnancy and delivery. GlycA and glutamine were 
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not significantly changed in MAL during pregnancy. Significance 
of the differential serum metabolite concentrations at each time 
point is shown in online supplementary figure S3A. There was 
no significant difference between NBS and RES participants 
at any time point (online supplementary table S5). Although 
OPLS-DA and time series modelling showed clear evidence that 
previous BS impacted on the metabolic profiles, PCA indicated 
that the greatest metabolic variation in plasma composition was 
due to the changes over time during pregnancy, irrespective of 
surgery, with samples collected at T1 being markedly different 
from those obtained at later time points in the pregnancy (online 
supplementary figure S4). Thus no inherent structure associ-
ated with study group, age or BMI was evident in the 1H NMR 
maternal serum data. No differences in the metabolic profiles 
of cord serum from neonates in each study group were detected 
(online supplementary table S3).

Surgery-associated metabolic differences in maternal and 
neonatal urine metabolomes
Similar to the serum samples, PCA models indicated that the 
metabolic variation driven by temporal changes throughout 
pregnancy was stronger than that associated with study group, 
age or BMI (online supplementary figure S4). Urine samples 
collected at delivery (T6) clearly differed from those taken at any 
other time point during pregnancy. In addition to endogenous 
changes, drug metabolites of paracetamol as well as mannitol, 
a common ingredient in drug tablet coating, were detected in 
urine obtained at T6. Outliers identified from PCA models at 
each time point were samples containing high concentrations 
of glucose or drug metabolites and were excluded from subse-
quent supervised models (online supplementary table S3). Based 
on the OPLS-DA models, no significant differences were iden-
tified between NBS and RES groups or between RES and MAL 
groups at any of the six time points; however, urine metabolic 
profiles of MAL patients were significantly altered compared 
with the NBS group as early as T1 and this difference persisted 
throughout pregnancy (online supplementary table S3). The 
strongest discriminatory metabolites (online supplementary 
table S4 and online supplementary figure S5) contributing to the 
differences between MAL and NBS groups were host-gut bacte-
rial co-metabolites PAG, PCS, IS, PHPA, as well as an unidenti-
fied aromatic metabolite (unknown) with structural similarities 
to PCS (based on both 1H and 13C shifts; online supplementary 
figure S6). These metabolites were significantly elevated in MAL 
(n=14; NBS n=50) patients during pregnancy (figure  1A). 
Creatinine and α-ketoisovalerate were present in lower concen-
trations in MAL patients; methylmalonate and valine were 
not significantly associated with the MAL group over the time 
course (figure 1A) but were significantly lower in MAL patients 
at specific time points (online supplementary figure S3B). None 
of these metabolites were significantly changed in the RES group 
after correcting for multiple hypothesis tests (online supplemen-
tary table S5). Interestingly, when the RES group was divided 
into gastric banding (purely mechanical) and sleeve gastrec-
tomy (removal of part of the stomach with metabolic effects), 
patients with a sleeve tended to have higher PAG and PCS than 
patients with a band (online supplementary figure S7). Maternal 
urine samples collected at T6 could not be discriminated for 
any pairwise comparison by OPLS-DA (online supplementary 
table S3). However PAG, the metabolite with the largest effect 
size in maternal samples, retained significance in the offspring’s 
urine at T6 (figure 1B). The relative concentration of PAG was 
significantly increased in babies born from MAL mothers (n=4) 

compared with babies born from RES (n=6, p=0.04) and NBS 
(n=18, p=0.021) mothers, mirroring the difference observed 
between the MAL and NBS maternal samples.

Taxonomic changes in the maternal gut microbiota of MAL 
patients
To support the finding of altered microbiota-associated metabo-
lites in MAL patients detected by 1H NMR spectroscopy, faecal 
microbiome compositions from a subset of the cohort were anal-
ysed. A total of 68 stool samples representing 39 mothers (NBS 
n=25, MAL n=14) were studied. After excluding one maternal 
NBS sample due to low sequencing depth (2181 reads), the mean 
number of high-quality, paired-end 16S rRNA gene amplicon 
sequences per sample was 22 405 (±5535 SD) with a minimum 
sequencing depth of 12 967.

Women with a previous MAL surgery exhibited greater α-diver-
sity, or a higher number of distinct taxa with more even distribu-
tions, compared with the NBS group but this was only statistically 
significant in the third trimester of pregnancy (figure 2A). β-diver-
sity analysis comparing pairwise dissimilarities between samples 
revealed that MAL patients had a distinct (p=0.001) gut micro-
biota from the NBS group throughout pregnancy (figure  2B). 
MAL patients could be distinguished by an increase in relative 
abundance of Escherichia/Shigella, Streptococcus and Enterococcus 
genera and these changes manifested at all higher taxonomic 
ranks (figure 2C). Relative increases in abundances of Rothia and 
its family Micrococcaceae were also observed. Anaerostipes was 
the only genus found in significantly lower relative abundance in 
the MAL group at multiple time points. Only taxa that exhibited 
differential abundance in the MAL group at more than one time 
point were included in figure 2C, but taxa displaying differences 
between groups at a single time point during pregnancy are detailed 
in online supplementary table S6. Differential abundance at the 
amplicon sequence level was investigated for sequences assigned 
to the genera Streptococcus, Enterococcus, Escherichia/Shigella 
and Rothia. Species assignments were compared against SILVA26 
and RDB27 databases. From the 25 16S rRNA gene sequences 
(Escherichia/Shigella n=11, Streptococcus n=12, Enterococcus 
n=1 and Rothia n=1) found in significantly higher abundance 
in MAL patients (online supplementary table S7), the following 
species were identified: Escherichia coli, Streptococcus salivarius, 
Streptococcus vestibularis, Streptococcus mutans and Streptococcus 
parasanguinis.

Integrative analysis of phenotypes
To determine if the observed MAL signatures were complemen-
tary across the data sets, an integrative approach was used to 
model the bacterial (n=68) and metabolic (serum n=60; urine 
n=66) data together. Clinical classes could be discriminated 
on the first component of the model for both urine and faecal 
data sets while this difference was not apparent in the serum 
data (figure 3A). Urine PAG, PCS, and IS concentrations were 
highly correlated and had the highest contribution to the model 
followed by leucine, isoleucine (also highly correlated) and 
isobutyrate (figure 3B). PAG, PCS and IS were most correlated 
with Streptococcus, Enterococcus, Escherichia/Shigella, Rothia 
and Holdemanella (figure 3C). Variables in this cluster also had 
a strong negative correlation with serum leucine, isoleucine and 
isobutyrate. Anaerostipes, the only genus that decreased in abun-
dance in the MAL group, was negatively correlated with PAG, 
PCS and IS but positively correlated with leucine, isoleucine and 
isobutyrate (figure 3C).
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Figure 2  Gut bacterial alterations in malabsorptive patients. (A) Comparison of Shannon diversity between malabsorptive (MAL) and no bariatric 
surgery (NBS) groups at 11–14 weeks (T1), 20–24 weeks (T2) and 30–33 weeks (T4) gestation. (B) Principal coordinates analysis of Bray-Curtis 
dissimilarities between MAL (blue) and NBS (purple) during pregnancy (T1: circle, T2: triangle, T4: square). P value obtained from permutational 
multivariate analysis of variance test. (C) Taxa that exhibited differential abundance (Mann-Whitney U test; padj<0.05) at more than one time point are 
plotted. Values are reported in online supplementary table S6. **P<0.01 (Mann-Whitney U test); NS, not significant.

Metabolic profile and clinical outcomes
Spearman’s correlation coefficients (ρ) were calculated to assess 
the relationships between relative concentrations of maternal 
metabolites and clinical measurements (maternal: fasting insulin, 
fasting glucose and HOMA-IR measured at T3; neonatal: esti-
mated fetal weight (measured at T2, T4 and T5) or birth weight 
percentiles, and gestational age at delivery). Throughout preg-
nancy, urinary host-microbial co-metabolites PAG and PCS were 
negatively associated with maternal HOMA-IR and fasting insulin 
while the branched-chain amino acids (mainly at T2) had a posi-
tive correlation (figure 4). PAG and PCS relative concentrations 
at T2, IS and unknown at T5, and IS and PAG at T6 were also 
negatively correlated with the weight percentiles of the babies at 
the corresponding time points. Partial correlations controlling for 
the effect of maternal age and BMI on maternal measurements as 
well as the effect of maternal age, BMI and HOMA-IR on birth-
weight percentile are reported in online supplementary table S8, 
but these confounders did not alter the overall results. Impor-
tantly, the concentrations of these metabolites did not correlate 
(online supplementary figure S8) with percentage of weight lost or 
time interval between BS and conception (which ranged from 12 
months to 11 years in our cohort) in MAL patients, suggesting that 
the phenotype is persistent.

Discussion
Our results demonstrate that pregnancies following a MAL bariatric 
procedure are characterised by altered maternal and neonatal meta-
bolic profiles compared with pregnancies without such surgery. In 
particular, women with previous MAL surgery had lower serum 
concentrations of branched-chain amino acids (leucine and isole-
ucine) and branched-chain fatty acids (isobutyrate) and excreted 
higher concentrations of urinary host-microbial co-metabolites 
of protein putrefaction (PAG, PCS, IS and PHPA). This signature 
was correlated with a shift in the gut microbiota which included 
increases in relative abundance of bacterial genera Enterococcus, 
Streptococcus, Escherichia/Shigella and Rothia as well as a decrease 
in Anaerostipes. The observed MAL-associated changes in metabo-
lism were also inversely associated with maternal insulin resistance 
and the offspring’s weight, suggesting that a previous MAL surgery 
may have both beneficial and detrimental effects on pregnancy. 
With regard to the RES group, we posit these patients, especially 
those with a previous sleeve gastrectomy, represent an intermediate 
phenotype due to the lower risk of malabsorption imposed by 
these procedures and less extreme changes to the gastrointestinal 
environment which would likely result in lesser alterations in the 
gut microbiome.28
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Figure 3  Integration of serum, urine and faecal profiles. (A) Scores plots showing samples from each data set projected in latent space. 
Clinical classes are discriminated along component 1. (B) Variables are plotted (coloured by biofluid) where each point represents the Pearson 
correlation between that variable and each component. High correlations with either component (|r|≥0.5) are BOLD and labelled. (C) Pearson 
correlations (|r|≥0.5) between variables in different data sets along component 1 are plotted. NBS, no bariatric surgery; MAL, malabsorptive; 
alpha-KIV, α-ketoisovalerate; D-beta-HB, d-β-hydroxybutyrate; IS, indoxyl sulfate; PAG, phenylacetylglutamine; PCS, p-cresol sulfate; PHPA, p-
hydroxyphenylacetate.

Figure 4  Relative concentrations of metabolites correlate with 
maternal insulin resistance and fetal/birth weight. Spearman’s 
correlations between clinical measurements (red) and metabolite 
relative concentrations. Correlations plotted are significant (padj<0.05). 
Values are reported in online supplementary table S8. Negative 
correlations are denoted by dashed lines. Urine metabolites are denoted 
by black borders. FW/BW, estimated fetal weight or birth weight; Ile, 
isoleucine; IS, indoxyl sulfate; Leu, leucine; MFI, maternal fasting insulin; 
MIR, maternal HOMA-IR; PAG, phenylacetylglutamine; PCS, p-cresol 
sulfate.

Our results assessing the influence of BS on the maternal faecal 
microbiome composition are consistent with previous findings 
in non-pregnant individuals where MAL, but not RES, surgery 
resulted in increased relative abundances of Bacilli and Gammapro-
teobacteria (including genera Enterococcus, Streptococcus and 
Escherichia) as well as associated faecal metabolites28; abundances 
of both classes positively correlated with products of protein 
fermentation. Studies consistently show a gut bacterial signature 
of facultative anaerobes and oral-associated bacteria in BS (mainly 
MAL) patients with an increase in relative abundance of entero-
bacteria being the most consistent bacterial marker across multiple 
studies in both humans7 8 10 28–30 and animals.11 31 This shift in gut 
microbial community structure is believed to be, at least partially, 
a result of the increased oxygen and pH in the digestive tract 
following the anatomical rearrangement of a MAL surgery.30 32 
Enterobacteria are Gram-negative and generally present in very 
low densities (<<108 CFU/g) in the normal gut, but increased 
abundances of these bacteria, some of which are known pathogens, 
have been associated with both inflammatory bowel disease and 
colon cancer.33 This underscores the need for understanding the 
mechanisms by which the altered bariatric microbiome can impact 
on maternal and neonatal metabolism and downstream health.

Increased concentrations of urinary microbial-associated 
metabolites following MAL BS have been reported in 
animals11 34 and in one human study with only two bariatric 
patients.9 Carbohydrates are the preferred source of energy for 
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microbes inhabiting the large intestine.35 However, we hypoth-
esise that the MAL condition not only changes the gastrointes-
tinal environment resulting in an altered microbial community 
but also results in more undigested protein reaching the large 
intestine36 and both of these factors likely contribute to the 
shift from carbohydrate to protein metabolism. Fermentation of 
protein by gut bacteria, or putrefaction, in the colon is generally 
considered detrimental to health.37 Gut bacterial metabolism of 
aromatic amino acids (phenylalanine, tyrosine and tryptophan) 
results in the production of phenols and indoles,38 which are 
inflammatory and potentially toxic compounds.39 40 Bacterial 
enzymes are necessary for metabolism of phenylalanine and 
tyrosine to phenolic compounds phenylacetate and p-cresol, 
respectively, and for the metabolism of tryptophan to indole. 
Indole and p-cresol are sulfated to IS and PCS, respectively, prior 
to excretion while phenylacetate is converted to PAG by host 
metabolism. PHPA is an intermediate in the tyrosine degradation 
pathway but is also formed from phenylacetate.38 Enterococcus 
spp. contain enzymes necessary for both phenylalanine and tyro-
sine metabolism; E. coli is involved in tyrosine metabolism.41 
Both species are also known as indole producers.42 Although 
Streptococcus may not be directly involved in the formation of 
these metabolites, it does have proteolytic activity43 and could 
contribute to the observed phenotype by making amino acids 
available from dietary protein. To our knowledge, this is the 
first report of upregulation of host-microbe co-metabolism of 
aromatic amino acids post-MAL surgery in humans. Previous 
reports have shown that the gut microbiota shifts to protein 
putrefaction after a MAL BS10 28 29 but, having focused on faecal 
samples, the host component of these pathways was overlooked. 
Lacking dietary data, we cannot exclude the possibility that the 
MAL metabolic phenotype results from increased protein intake. 
However, reports of protein malnutrition and protein intoler-
ance post-BS44 45 suggest that high protein intake is unlikely in 
these patients. An inverse association between PAG/PCS and BMI 
has been reported although the relationship between adipiosity 
and the gut microbiota is still under debate.46 Other reports, in 
agreement with our data, have identified decreased concentra-
tions of branched-chain amino acids in non-pregnant BS patients 
which supports our hypothesis that protein metabolism is altered 
in these individuals. Branched-chain amino acids have previously 
been linked to insulin resistance associated with obesity.47–50

Our data suggest that PAG and PCS, or their respective meta-
bolic pathways, are also associated with reduction in maternal 
insulin resistance following BS. We are aware of recent discus-
sion surrounding the suitability of oral glucose tolerance testing 
in bariatric patients and have since revised our methods. In spite 
of this caveat, it is conceivable that the gut microbiota plays a 
role in insulin resistance.49 51 Our finding of an inverse correla-
tion between maternal urinary host-microbial co-metabolites 
and fetal/birth weight indicates that the maternal metabolic 
changes may also be related to the risk of these women deliv-
ering small for gestational age neonates. Although malnutrition 
resulting from maternal malabsorption likely contributes to 
reduced fetal growth, the downstream metabolic consequences 
of malabsorption also warrant further investigation given the 
potential toxicity of the final metabolic products. It has also been 
shown that higher urinary concentrations of PCS are indicative 
of reduced sulfation capacity in the host, which presents signif-
icant competition for similar reactions, namely acetaminophen 
detoxification, which also require sulfation prior to excretion.52 
Pharmacokinetics in these patients should be investigated, espe-
cially during pregnancy, given that MAL patients have higher 
urinary concentrations of two sulfated compounds (PCS and IS).

Pregnancy has been shown to induce substantial time-
dependent alterations in physiology and metabolism53 54 under 
the constantly changing physiological demand as the mother 
responds to the needs of the growing fetus. Nevertheless, 
the systematic effect of BS on the metabolic profiles is super-
imposed on the changing metabolic landscape and can be 
clearly observed in the metabolic phenotypes. In particular, 
GlycA, a metabolite associated with systemic inflammation, 
increased during the first two trimesters but remained lower in 
MAL patients during the third trimester indicating that these 
women have a lower grade of pregnancy-related inflammation 
compared with obese women without BS.50 55 Drastic metabolic 
changes could also be seen at the time of delivery in all groups 
which is likely due to the metabolic consequences of the labour 
process and masked surgery-related differences.56 Intriguingly, 
despite prophylactic administration of antibiotics (given to 59% 
of the women at delivery), PAG was detected in the neonatal 
urine soon after birth and in significantly higher concentra-
tion in those born from women with previous MAL surgery 
compared with the offspring of the NBS women. Although this 
result should be treated with caution due to the low number 
of newborns enrolled in the study, it suggests transfer of the 
modified maternal profile to the offspring. Further independent 
studies are required to validate the generalisability of this obser-
vation with longer-term follow-up of the infants to determine 
whether this neonatal metabolic phenotype is maintained and 
how it impacts their future risk of obesity and diabetes. BS is 
not an appropriate intervention at population scale but identifi-
cation of beneficially altered physiology may allow for develop-
ment of targeted interventions aimed at specifically modulating 
key pathways.
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Infant

T1 T2 T3 T4 T5 T6 Total T6

NBS 54 47 47 43 38 27 256 30

RES 6 10 12 8 10 7 53 10

MAL 12 15 15 15 17 11 85 14

NBS 63 61 58 52 51 41 326 18

RES 6 11 11 12 12 12 64 6

MAL 16 16 17 18 18 16 101 4

NBS 9 11  - 21  -  - 41 -

MAL 10 7  - 10  -  - 27 -

Figure S1: Summary of sampling by individual. Each point represents a sampling event for an individual and 

is coloured based on which samples were collected and analysed. The size of the point represents the BMI 

category of the individual at that time point. T1 11-14 weeks gestation; T2 20-24 weeks gestation; T3 28-30 

weeks gestation; T4 30-33 weeks gestation; T5 35-37 weeks gestation; T6 delivery

NBS no bariatric surgery; RES restrictive; MAL malabsorptive; T1 11-14 weeks gestation; T2 20-24 weeks gestation; T3 28-30 weeks gestation; T4 30-

33 weeks gestation; T5 35-37 weeks gestation; T6 delivery

Table S1: Samples analysed. Number of samples analysed for each biospecimen type at each time point.
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Table S2: Clinical characteristics and pregnancy outcomes of the study participants

Mode of delivery, n (%)

67 (95.7)

3 (4.3)

Data are expressed as mean ± standard deviation or as otherwise stated. *P <0.05 comparison to no bariatric surgery group; ƗP <0.05 

comparison between restrictive and malabsorptive groups

BMI prior to surgery, 

kg/m2

Booking BMI, kg/m2

Gestational age at 

delivery, weeks

Birth weight, g

Vaginal

Caesarean section

38 (54.3)

32 (45.7)

21 (51.2)

20 (48.8)

6 (37.5)

10 (62.5)

15 (60.0)

10 (40.0)

Yes

Variable

Maternal age, years

Parity, n (%)

Nulliparous

Parous

Racial group, n (%)

Birth weight percentile 

No bariatric surgery

(n = 70)

Post-bariatric surgery

(n = 41)

16 (22.9)

67 (95.7)

3 (4.3)

White

Time between surgery 

and conception, 

months

Other

Conception, n (%)

Spontaneous

Assisted reproductive 

techniques

Smoking, n (%)

No

54 (77.1)

33.46 ± 4.58*

38 (92.7)

58.34 ± 31.24

32.56 ± 4.32* 34.04 ± 4.8*

11 (44.0)

Malabsorptive

(n = 25)

29.72 ± 5.26

43 (61.4)

27 (38.6)

Restrictive

(n = 16)

16 (100.0) 22 (88.0)

9 (56.3)20 (48.8)

21 (51.2) 7 (43.8) 14 (56.0)

19 (76.0)

6 (24.0)

12 (75)

4 (25)

31 (75.6)

10 (24.4)

3 (12.0)0 (0)3 (7.3)

36 (87.8)

5 (12.2)

15 (93.8)

1 (6.3)

21 (84.0)

4 (16.0)

49.12 ± 30.54 64.24 ± 30.83Ɨ-

- 41.95 ± 6.47

39.44 ± 1.34

3520.92 ± 603.86

59.48 ± 33.30

47.19 ± 7.95

32.94 ± 5.10

38.67 ± 2.266*

3062.53 ± 588.32*

39.01 ± 27.35*

34.12 ± 5.68

38.95 ± 2.31

3096.75 ± 519.07*

39.29 ± 26.25*

50.54 ± 7.01Ɨ

32.93 ± 4.10

38.49 ± 2.26*

3040.64 ± 638.12*

38.83 ± 28.57*

32.96 ± 7.29
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Time 

point
Biofluid Samples

Outliers 

Excluded
Class R

2
X R

2
Y Q

2 P value

NBS n = 63 NBS n = 3 NBS vs RES 0.119 0.776 -0.117 NS

RES n = 6 RES n = 1 RES vs MAL 0.171 0.935 -0.025 NS

MAL n = 16 MAL n = 2 NBS vs MAL 0.088 0.830 0.159 0.015388

NBS n = 54 NBS n = 0 NBS vs RES 0.022 0.817 -0.274 NS

RES n = 6 RES n = 0 RES vs MAL 0.058 0.929 -0.044 NS

MAL n = 12 MAL n = 0 NBS vs MAL 0.037 0.749 -0.156 NS

NBS n = 61 NBS n = 1 NBS vs RES 0.096 0.810 0.094 NS

RES n = 11 RES n = 1 RES vs MAL 0.140 0.941 0.297 NS

MAL n = 16 MAL n = 0 NBS vs MAL 0.095 0.843 0.324 1.17E-05

NBS n = 47 NBS n = 0 NBS vs RES 0.027 0.830 -0.067 NS

RES n = 10 RES n = 0 RES vs MAL 0.051 0.900 0.056 NS

MAL n = 15 MAL n = 0 NBS vs MAL 0.031 0.825 0.114 NS

NBS n = 58 NBS n = 0 NBS vs RES 0.111 0.826 0.046 NS

RES n = 11 RES n = 1 RES vs MAL 0.187 0.893 0.343 NS

MAL n = 17 MAL n = 3 NBS vs MAL 0.100 0.843 0.407 3.71E-07

NBS n = 47 NBS n = 0 NBS vs RES 0.033 0.748 -0.218 NS

RES n = 12 RES n = 0 RES vs MAL 0.049 0.948 0.216 NS 

MAL n = 15 MAL n = 0 NBS vs MAL 0.040 0.744 0.091 NS 

NBS n = 52 NBS n = 2 NBS vs RES 0.121 0.790 0.052 NS

RES n = 12 RES n = 1 RES vs MAL 0.131 0.921 0.086 NS

MAL n = 18 MAL n = 1 NBS vs MAL 0.119 0.812 0.344 2.42E-05

NBS n = 43 NBS n = 0 NBS vs RES 0.034 0.742 -0.098 NS

RES n = 8 RES n = 0 RES vs MAL 0.075 0.881 0.214 NS

MAL n = 15 MAL n = 0 NBS vs MAL 0.042 0.775 0.178 0.027

NBS n = 51 NBS n = 2 NBS vs RES 0.117 0.802 0.023 NS

RES n = 12 RES n = 0 RES vs MAL 0.135 0.935 0.001 NS

MAL n = 18 MAL n = 0 NBS vs MAL 0.109 0.852 0.483 2.11E-08

NBS n = 38 NBS n = 0 NBS vs RES 0.026 0.908 -0.377 NS

RES n = 10 RES n = 0 RES vs MAL 0.054 0.916 0.224 NS

MAL n = 17 MAL n = 0 NBS vs MAL 0.048 0.847 0.245 0.006

NBS n = 41 NBS n = 2 NBS vs RES 0.087 0.844 0.055 NS

RES n = 12 RES n = 0 RES vs MAL 0.164 0.907 0.110 NS

MAL n = 16 MAL n = 4 NBS vs MAL 0.134 0.767 0.067 NS

NBS n = 27 NBS n = 0 NBS vs RES 0.035 0.895 -0.116 NS

RES n = 7 RES n = 0 RES vs MAL 0.068 0.903 -0.103 NS

MAL n = 11 MAL n = 0 NBS vs MAL 0.055 0.789 0.028 NS

NBS n = 30 NBS n = 0 NBS vs RES 0.030 0.886 -0.022 NS

RES n =10 RES n =0 RES vs MAL 0.043 0.925 -0.025 NS

MAL n = 14 MAL n = 0 NBS vs MAL 0.037 0.885 0.031 NS

NBS n = 18 NBS n = 0

RES n = 6 RES n = 0

MAL n = 4 MAL n = 0

Table S3: Summary of OPLS-DA model statistics. OPLS-DA model statistics for two-group comparisons are 

reported for each time point after excluding extreme outliers identified from PCA models. 

11-14 

weeks (T1)

Urine

Serum

20-24 

weeks (T2)

Urine

Serum

28-30 

weeks (T3)

Urine

Serum

30-33 

weeks (T4)

Urine

Serum

Univariate analysis 

only

NBS no bariatric surgery; RES restrictive; MAL malabsorptive; NS not significant (P<0.05)

35-37 

weeks (T5)

Urine

Serum

Delivery 

(T6)

Urine

Serum

Cord 

Blood

Newborn 

urine
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Table S4: Metabolite identification

Metabolite 1
H NMR Chemical Shifts* Confirmed by Biofluid

Leucine 0.96 (2xd), 1.71 (m), 3.73 (t) STOCSY/STORM, J-res Serum

Isoleucine 0.94 (t), 1.01 (d) STOCSY/STORM, J-res Serum

Isobutyrate 1.09 (d) STOCSY/STORM, J-res, HSQC Serum

N –acetyl glycoprotein 2.05 (s) STOCSY/STORM, J-res, HSQC Serum

Glutamine 2.14 (m), 2.46 (m), 3.77 (t) STOCSY/STORM, J-res, HSQC Serum

D-β-hydroxybutyrate 1.22 (d), 2.37 (m), 4.17 (m) STOCSY/STORM, J-res Serum

Valine 0.99 (d), 1.04 (d) STOCSY/STORM, J-res Urine

α-ketoisovalerate 1.11 (d) STOCSY/STORM, J-res Urine

Methylmalonate 1.24 (d) STOCSY/STORM, J-res Urine

Creatinine 3.05 (s), 4.06 (s) STOCSY/STORM, J-res Urine

p -cresol sulfate 2.35 (s), 7.21 (d), 7.28 (d) STOCSY/STORM, J-res, HSQC Urine

p -hydroxyphenylacetate 3.45 (s), 6.86 (d), 7.17 (d)
STOCSY/STORM, J-res, HSQC, 

spike in
Urine

Phenylacetylglutamine
1.92 (m), 2.11 (m), 2.27 (m), 3.67 (m), 

4.19 (m), 7.36 (t), 7.43 (t)
STOCSY/STORM, J-res, HSQC Urine

Unknown 7.34 (d), 7.48 (t) STOCSY/STORM, J-res, HSQC Urine

Indoxyl sulfate 7.5 (d), 7.7 (d)
STOCSY/STORM, J-res, HSQC, 

spike in
Urine

*s=singlet, d=doublet, t=triplet, m=multiplet

STOCSY: Statistical Total Correlation Spectroscopy; STORM: Subset Optimisation by Reference Matching; HSQC: Hetero-nuclear Single Quantum 

Coherence (2D NMR)
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Figure S3: Maternal metabolic changes depend on type of bariatric surgery. For each discriminatory

metabolite identified in (a) serum or (b) urine samples, changes in relative concentrations for malabsorptive

(MAL) and restrictive (RES) groups are plotted at each time point. The no bariatric surgery (NBS) group was

used as the reference group in fold change calculations. T1 11-14 weeks gestation; T2 20-24 weeks

gestation; T3 28-30 weeks gestation; T4 30-33 weeks gestation; T5 35-37 weeks gestation; T6 delivery;

GlycA N-acetyl glycoprotein; IS indoxyl sulfate; PAG phenylacetylglutamine; PCS p-cresol sulfate; PHPA p-

hydroxyphenylacetate; *P adj <0.05 (Mann-Whitney U)
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log2FC P P adj log2FC P P adj

T1 0.036 NS NS -0.119 NS NS

T2 -0.149 3.15E-02 NS -0.128 3.54E-02 NS

T3 -0.053 NS NS -0.114 2.14E-02 4.18E-02

T4 0.033 NS NS -0.156 1.11E-02 2.56E-02

T5 -0.041 NS NS -0.168 4.62E-03 1.49E-02

T6 -0.02 NS NS -0.061 NS NS

T1 -0.04 NS NS -0.093 NS NS

T2 -0.152 7.02E-03 NS -0.105 2.65E-02 4.97E-02

T3 -0.049 NS NS -0.062 NS NS

T4 -0.003 NS NS -0.133 2.39E-03 8.97E-03

T5 0.077 NS NS -0.174 1.26E-04 1.14E-03

T6 -0.028 NS NS -0.035 NS NS

T1 0.032 NS NS -0.184 1.45E-03 5.69E-03

T2 -0.077 NS NS -0.116 NS NS

T3 -0.044 NS NS -0.203 3.61E-04 1.86E-03

T4 0.026 NS NS -0.191 2.54E-04 1.76E-03

T5 0.062 NS NS -0.182 3.70E-04 1.86E-03

T6 0.137 NS NS -0.014 NS NS

T1 0.038 NS NS -0.008 NS NS

T2 0.009 NS NS 0.031 NS NS

T3 -0.046 NS NS 0.016 NS NS

T4 -0.032 NS NS 0.044 NS NS

T5 -0.037 NS NS 0.145 4.81E-02 NS

T6 -0.242 NS NS -0.224 NS NS

T1 0.112 NS NS -0.026 NS NS

T2 -0.096 NS NS -0.018 NS NS

T3 0.056 NS NS 0.047 NS NS

T4 0.1 NS NS 0.03 NS NS

T5 0.07 NS NS 0.167 NS NS

T6 0.008 NS NS 0.847 NS NS

T1 0.007 NS NS 0.014 NS NS

T2 -0.007 NS NS -0.046 NS NS

T3 -0.039 NS NS -0.046 NS NS

T4 -0.062 NS NS -0.105 1.57E-02 3.37E-02

T5 -0.079 NS NS -0.099 2.02E-02 4.04E-02

T6 0.067 NS NS -0.04 NS NS

T1 0.082 NS NS 0.85 1.02E-04 1.02E-03

T2 0.469 NS NS 0.854 2.99E-05 4.38E-04

T3 0.137 NS NS 0.853 4.73E-05 5.32E-04

T4 0.397 NS NS 0.794 3.39E-05 4.38E-04

T5 0.222 NS NS 0.97 1.27E-06 1.14E-04

T6 -0.064 NS NS 0.162 NS NS

T1 0.178 NS NS 0.631 1.42E-03 5.69E-03

T2 0.375 NS NS 0.856 2.40E-04 1.76E-03

Glutamine Serum

D-β-

hydroxybutyrate
Serum

GlycA

Table S5: Maternal metabolic changes depend on type of bariatric surgery. For each discriminatory

metabolite identified by OPLS-DA (malabsorptive versus no bariatric surgery), changes in relative

concentrations are detailed at each time point with no bariatric surgery as the reference group. Calculations

in the restrictive group are shown for comparison. 

PAG Urine

Restrictive Malabsorptive

Serum

Isoleucine Serum

Leucine Serum

Isobutyrate Serum

Metabolite Biofluid
Time 

point
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T3 0.028 NS NS 0.547 1.49E-02 3.26E-02

T4 0.228 NS NS 0.444 1.01E-02 2.39E-02

T5 0.13 NS NS 0.581 3.69E-03 1.28E-02

T6 0.04 NS NS 0.286 NS NS

T1 0.151 NS NS 0.505 4.10E-02 NS

T2 0.035 NS NS 0.365 8.85E-03 2.28E-02

T3 -0.081 NS NS 0.478 8.02E-03 2.12E-02

T4 0.069 NS NS 0.388 6.51E-03 1.77E-02

T5 0.212 NS NS 0.739 1.83E-05 4.38E-04

T6 0.105 NS NS 0.297 NS NS

T1 -0.077 NS NS 0.305 7.77E-04 3.50E-03

T2 0.854 4.51E-02 NS 0.47 1.34E-03 5.69E-03

T3 0.905 2.53E-02 NS 0.539 3.41E-05 4.38E-04

T4 0.764 4.42E-03 NS 0.3 9.69E-03 2.39E-02

T5 0.279 3.34E-02 NS 0.296 4.98E-03 1.55E-02

T6 0.767 NS NS 0.321 4.20E-02 NS

T1 2.495 8.54E-03 NS 0.463 3.60E-04 1.86E-03

T2 1.025 4.19E-02 NS 0.459 6.08E-03 1.73E-02

T3 0.1 NS NS 1.111 6.15E-03 1.73E-02

T4 0.375 3.36E-02 NS 1.252 2.68E-05 4.38E-04

T5 1.319 1.89E-03 NS 1.055 3.71E-04 1.86E-03

T6 1.021 4.69E-02 NS -0.343 NS NS

T1 -0.282 NS NS -0.505 3.10E-05 4.38E-04

T2 -0.057 NS NS -0.333 2.53E-03 9.12E-03

T3 -0.096 NS NS -0.119 NS NS

T4 -0.159 NS NS -0.055 NS NS

T5 -0.045 NS NS -0.086 NS NS

T6 0.141 NS NS -0.173 NS NS

T1 -0.327 NS NS -0.504 2.24E-04 1.76E-03

T2 -0.161 NS NS -0.284 NS NS

T3 -0.078 NS NS -0.307 1.77E-02 3.63E-02

T4 -0.087 NS NS -0.301 2.27E-02 4.36E-02

T5 0.073 NS NS -0.335 1.77E-02 3.63E-02

T6 0.106 NS NS -0.23 NS NS

T1 -0.224 NS NS -0.242 3.87E-02 NS

T2 -0.191 NS NS -0.143 1.27E-02 2.86E-02

T3 -0.133 NS NS -0.23 3.83E-03 1.28E-02

T4 -0.148 NS NS -0.153 NS NS

T5 -0.073 NS NS -0.198 1.00E-02 2.39E-02

T6 -0.102 NS NS 0.038 NS NS

T1 -0.13 NS NS -0.204 5.31E-03 1.59E-02

T2 -0.175 8.95E-03 NS -0.204 3.72E-04 1.86E-03

T3 0.021 2.32E-02 NS 0.097 NS NS

T4 -0.071 NS NS -0.1 3.67E-02 NS

T5 -0.169 9.34E-03 NS -0.224 4.80E-04 2.28E-03

T6 -0.237 NS NS -1.649 NS NS

PCS Urine

Valine Urine

GlycA N-acetyl glycoprotein; PAG phenylacetylglutamine; PCS p-cresol sulfate; IS indoxyl sulfate; PHPA p-hydroxyphenylacetate; T1 11-14 weeks 

gestation; T2 20-24 weeks gestation; T3 28-30 weeks gestation; T4 30-33 weeks gestation; T5 35-37 weeks gestation; T6 delivery; FC fold change; NS 

not significant (P<0.05)

PHPA Urine

Unknown Urine

Creatinine Urine

α-ketoisovalerate Urine

Methylmalonate Urine

IS Urine
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Figure S4: Principal component analysis (PCA) of
1
H NMR spectral data. Unsupervised PCA models were

calculated with all samples analysed to assess overall variation in metabolic profiles. Serum metabolic profiles

did not vary according to a) study group, b) BMI, or c) age but variation due to d) time point was observed

between first trimester (T1) samples and those taken during later pregnancy (T2-T5) or at delivery (T6). Urinary

metabolic profiles did not display overt signatures according to e) study group, f) BMI, or g) age but variation

but due to h) time point was evident between samples taken during pregnancy (T1-T5) and those taken at

delivery (T6). T1 11-14 weeks gestation; T2 20-24 weeks gestation; T3 28-30 weeks gestation; T4 30-33 weeks

gestation; T5 35-37 weeks gestation; T6 delivery

a b c

d e f

g h
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Rank
Time 

point
Taxon

Mean relative 

abundance 

malabsorptive

Mean relative 

abundance 

control

P  value log2(FC) P adj

Phylum T1 Proteobacteria 0.13632 0.02701 0.0017 2.34 0.0237

Phylum T4 Bacteroidetes 0.39265 0.52280 0.0016 -0.41 0.0237

Phylum T4 Proteobacteria 0.16318 0.03249 5.45E-05 2.33 0.0020

Class T1 Gammaproteobacteria 0.12379 0.01714 0.0022 2.85 0.0248

Class T1 Clostridia 0.28025 0.40068 0.0048 -0.52 0.0357

Class T1 Bacilli 0.05978 0.00789 0.0007 2.92 0.0144

Class T2 Bacilli 0.03774 0.00694 0.0011 2.44 0.0202

Class T4 Bacteroidia 0.39459 0.52538 0.0019 -0.41 0.0248

Class T4 Gammaproteobacteria 0.13910 0.01069 2.61E-05 3.70 0.0020

Class T4 Bacilli 0.07171 0.00987 5.45E-05 2.86 0.0020

Order T1 Enterobacteriales 0.12097 0.01627 0.0048 2.89 0.0357

Order T1 Clostridiales 0.28024 0.40059 0.0048 -0.52 0.0357

Order T1 Lactobacillales 0.05906 0.00789 0.0007 2.90 0.0144

Order T2 Enterobacteriales 0.11434 0.02743 0.0066 2.06 0.0425

Order T2 Lactobacillales 0.03772 0.00689 0.0011 2.45 0.0202

Order T4 Bacteroidales 0.39470 0.52539 0.0019 -0.41 0.0248

Order T4 Enterobacteriales 0.12698 0.00888 4.54E-05 3.84 0.0020

Order T4 Lactobacillales 0.07137 0.00982 5.45E-05 2.86 0.0020

Order T4 Pasteurellales 0.01194 0.00181 0.0043 2.72 0.0357

Order T4 Actinomycetales 0.00084 0.00025 0.0043 1.76 0.0357

Family T1 Enterobacteriaceae 0.12514 0.01639 0.0048 2.93 0.0357

Family T1 Streptococcaceae 0.05582 0.00795 0.0029 2.81 0.0285

Family T1 Micrococcaceae 0.00028 8.76E-05 0.0042 1.66 0.0357

Family T2 Enterobacteriaceae 0.11799 0.02810 0.0066 2.07 0.0425

Family T2 Enterococcaceae 0.00290 1.30E-05 0.0003 7.80 0.0086

Family T2 Streptococcaceae 0.03420 0.00689 0.0021 2.31 0.0248

Family T2 Micrococcaceae 0.00027 4.95E-05 0.0028 2.45 0.0285

Family T4 Enterobacteriaceae 0.12905 0.00927 4.54E-05 3.80 0.0020

Family T4 Enterococcaceae 0.00179 2.78E-05 0.0003 6.01 0.0086

Family T4 Streptococcaceae 0.07027 0.00983 5.45E-05 2.84 0.0020

Family T4 Pasteurellaceae 0.01203 0.00183 0.0043 2.72 0.0357

Family T4 Carnobacteriaceae 0.00032 6.41E-05 0.0013 2.30 0.0222

Family T4 Micrococcaceae 0.00023 8.65E-05 0.0079 1.40 0.0497

Genus T1 Escherichia.Shigella 0.11566 0.01274 0.0022 3.18 0.0248

Table S6: Differentially abundant taxa in malabsorptive group. For each taxonomic rank, differential

abundance was assessed by calculating log2(FC) of taxa relative abundances at each time point and applying

the Mann-Whitney U test. Taxa with P adj <0.05  are reported.
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Genus T1 Streptococcus 0.06395 0.00895 0.0022 2.84 0.0248

Genus T1 Anaerostipes 0.00281 0.01592 0.0037 -2.50 0.0350

Genus T1 Holdemanella 0.02151 0.00238 0.0066 3.18 0.0425

Genus T1 Rothia 0.00031 9.97E-05 0.0055 1.64 0.0380

Genus T2 Enterococcus 0.00323 1.45E-05 0.0003 7.80 0.0086

Genus T2 Streptococcus 0.03881 0.00794 0.0028 2.29 0.0285

Genus T2 Butyricimonas 0.00191 0.00029 0.0050 2.70 0.0357

Genus T2 Rothia 0.00030 5.59E-05 0.0028 2.43 0.0285

Genus T4 Escherichia.Shigella 0.12798 0.00838 5.44E-05 3.93 0.0020

Genus T4 Enterococcus 0.00202 3.12E-05 0.0003 6.02 0.0086

Genus T4 Streptococcus 0.07909 0.01096 5.45E-05 2.85 0.0020

Genus T4 Anaerostipes 0.00395 0.01148 0.0064 -1.54 0.0425

Genus T4 Haemophilus 0.01321 0.00202 0.0049 2.71 0.0357

Genus T4 Veillonella 0.00982 0.00120 0.0004 3.04 0.0097

Genus T4 Acidaminococcus 0.00350 7.71E-05 0.0044 5.50 0.0357

Genus T4 Solobacterium 0.00118 0.00029 0.0014 2.01 0.0223

Genus T4 Granulicatella 0.00035 7.13E-05 0.0015 2.31 0.0233

FC fold change; T1 11-14 weeks gestation; T2 20-24 weeks gestation; T4 30-33 weeks gestation
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RDP SILVA

4.96 0.0132 coli coli/flexneri

9.31 0.0005  - coli

7.15 2.40E-05 coli coli/fergusonii

3.95 0.0412 coli/dysenteriae  -

5.71 0.0357  - coli

7.3 1.20E-05 coli coli

5.21 0.0293 coli/flexneri coli/flexneri/sonnei

3.3 0.0184  -  -

22.69 6.80E-12 coli coli

6.27 3.60E-06 coli coli/fergusonii

3.31 0.0002  -  -

5.26 0.0408 gordonii gordonii/sanguinis

7.52 1.10E-13 vestibularis vestibularis

3.68 6.70E-07 salivarius/ vestibularis  -

4.09 0.0076 salivarius/ vestibularis salivarius

5.4 0.0376 salivarius salivarius

4.24 1.40E-05  - infantis

3.45 0.0313 mitis/sanguinis  -

4.05 0.0001 mutans mutans

3.61 0.0297 parasanguinis parasanguinis

3.39 0.0201 mitis/parasanguinis mitis

2.78 0.0135 parasanguinis parasanguinis

3.34 0.0049  - parasanguinis

Enterococcus 6.98 1.00E-12 faecalis/faecium faecalis

Rothia 2.01 0.0316 mucilaginosa -

FC fold change

Escherichia/

Shigella

Streptococcus

Species assignment

Table S7: Differentially abundant amplicon sequence variants. 16S rRNA gene amplicon sequences

belonging to genera of interest that are significantly (P adj <0.05 ) more abundant (DESeq2) in the

malabsorptive group compared to no bariatric surgery controls. 

Genus log2(FC) P adj
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Variable 1 Variable 2 ρ P P adj Partial ρ P P adj

PAG_T1
Fasting Maternal 

Insulin (microU/ml)
-0.37 0.00063 0.00751 -0.28 0.01335 0.02114

PCS_T1
Fasting Maternal 

Insulin (microU/ml)
-0.36 0.00111 0.00974 -0.28 0.01229 0.02031

IS_T1
Fasting Maternal 

Insulin (microU/ml)
-0.31 0.00447 0.02349 -0.30 0.00753 0.01607

PAG_T2
Fasting Maternal 

Insulin (microU/ml)
-0.46 0.00001 0.00040 -0.32 0.00327 0.00879

PCS_T2
Fasting Maternal 

Insulin (microU/ml)
-0.35 0.00076 0.00796 -0.23 0.03351 0.03979

Ile_T2
Fasting Maternal 

Insulin (microU/ml)
0.4 0.00052 0.00727 0.38 0.00119 0.00664

Leu_T2
Fasting Maternal 

Insulin (microU/ml)
0.38 0.00116 0.00974 0.37 0.00184 0.00865

PAG_T3
Fasting Maternal 

Insulin (microU/ml)
-0.46 0.00001 0.00044 -0.33 0.00269 0.00865

PCS_T3
Fasting Maternal 

Insulin (microU/ml)
-0.42 0.00006 0.00155 -0.33 0.00252 0.00865

PAG_T4
Fasting Maternal 

Insulin (microU/ml)
-0.4 0.00021 0.00348 -0.36 0.00101 0.00664

PCS_T4
Fasting Maternal 

Insulin (microU/ml)
-0.4 0.00018 0.00328 -0.39 0.00041 0.00466

PAG_T5
Fasting Maternal 

Insulin (microU/ml)
-0.48 0.00001 0.00040 -0.39 0.00049 0.00466

PCS_T5
Fasting Maternal 

Insulin (microU/ml)
-0.41 0.00023 0.00353 -0.30 0.00858 0.01717

IS_T5
Fasting Maternal 

Insulin (microU/ml)
-0.41 0.00017 0.00328 -0.36 0.00122 0.00664

Leu_T5
Fasting Maternal 

Insulin (microU/ml)
0.36 0.00444 0.02349 0.34 0.00761 0.01607

PCS_T6
Fasting Maternal 

Insulin (microU/ml)
-0.32 0.00719 0.03551 -0.22 NS NS

PAG_T1 Maternal HOMA-IR -0.35 0.00148 0.01068 -0.25 0.02701 0.03311

PCS_T1 Maternal HOMA-IR -0.35 0.00161 0.01079 -0.27 0.01638 0.02305

IS_T1 Maternal HOMA-IR -0.29 0.00822 0.03943 -0.27 0.01488 0.02262

PAG_T2 Maternal HOMA-IR -0.46 0.00001 0.00040 -0.32 0.00347 0.00879

PCS_T2 Maternal HOMA-IR -0.33 0.00153 0.01068 -0.20 NS NS

Ile_T2 Maternal HOMA-IR 0.38 0.00089 0.00828 0.35 0.00261 0.00865

Leu_T2 Maternal HOMA-IR 0.33 0.00418 0.02341 0.31 0.00994 0.01808

PAG_T3 Maternal HOMA-IR -0.41 0.00010 0.00235 -0.26 0.01813 0.02461

PCS_T3 Maternal HOMA-IR -0.35 0.00081 0.00796 -0.23 0.03463 0.03988

Table S8: Relative concentrations of metabolites correlate with maternal insulin resistance and fetal/birth

weight. Spearman’s (ρ) correlations between metabolite relative concentrations at each time point and

clinical or biochemical measures. Statistically significant (P adj <0.05) correlations are detailed along with

partial correlations.
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 1 

SUPPLEMENTARY METHODS 

Longitudinal metabolic and gut bacterial profiling of pregnant women with previous bariatric 

surgery 

Study population, sampling and clinical data 

The population is part of an ongoing prospective study investigating the impact of maternal BS on 

perinatal outcomes. The study was approved by the West London Research Ethics Committee (No: 

14/LO/0592) and all women gave written, informed consent for their data and samples to be used. 

Pregnant women with and without previous BS were recruited from May 2015 to April 2017 at Chelsea 

& Westminster Hospital (London, UK) as previously described[1]. Women were seen at 5 time points 

during pregnancy (T1: 11+0-14+0, T2: 20+0-24+0, T3: 28+0-30+0, T4: 30+0-33+0 and T5: 35+0-37+6 weeks 

gestation) and within 72 h of delivery (T6). Maternal blood (serum) and urine samples were collected 

at each visit while fecal samples were requested at the T1, T2 and T4 visits (see online supplementary 

figure S1 and table S1). A full oral glucose tolerance test (2 h, 75 g) was conducted at T3 and maternal 

insulin resistance was calculated using the homeostatic model assessment for insulin resistance 

(HOMA-IR=fasting serum insulin (µU/L) x fasting glucose (mmol/L)/22.5)[2]. Estimated fetal weight 

was calculated by trans-abdominal ultrasound scans[3] at T2, T4 and T5. At T6, birth weight was 

recorded, percentiles for the gestation were calculated[4] and, where possible, neonatal samples 

(cord serum and urine) were collected. All samples were stored at -80⁰C for future analysis. For the 

current study population, women with diagnosis of type 2 diabetes mellitus or GDM (due to the effect 

of diabetes on the metabolic profile) and those that had a miscarriage were excluded. Only NBS 

participants with a BMI of 25 to 50 kg/m2 at T1 were included to match the BMI range of the included 

bariatric patients at T1. 

Metabolic profiling of biofluid samples 

Serum and urine samples were prepared according to an established protocol[5]. 1H NMR spectra 

were acquired on a Bruker 600 MHz spectrometer (Bruker BioSpin, Karlsruhe, Germany) following a 
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published method[5]. Briefly, experiments for serum samples were run at 310 K using a Carr-Purcell-

Meiboom-Gill (CPMG) spin-echo pulse sequence with water presaturation (Bruker pulse program: 

cpmgpr1d). For urinary samples, experiments were run at 300 K using a standard one-dimensional 

(1D) spectroscopy pulse sequence with water presaturation (noesygppr1d). J-resolved (J-res) 

experiments (jresgpprqf) were also run for all samples to increase capacity for structural identification 

of molecules. The spectra were automatically baseline corrected, phased and referenced to sodium 

3-(trimethylsilyl) propionate-2,2,3,3-d4 (TSP) in the Bruker TopSpin 3.1 software. Raw data were 

processed in MATLAB version R2016b (The MathWorks, Inc., Natwick, MA) using scripts developed by 

Dr. T. Ebbels at Imperial College. Spectra were aligned using the recursive segment-wise peak 

alignment (RSPA) algorithm[6] and normalised with the probabilistic quotient normalisation (PQN) 

function[7]. Downstream multivariate modelling was performed in SIMCA 14.1 (Sartorius Stedim 

Biotech, Aubagne, France).  

Statistical modelling and analysis of metabolic profiles 

Unsupervised principal component analysis (PCA) models were used to assess variation in metabolic 

profile over all time points and to identify extreme outliers (based on Hotelling’s T2 statistic) to exclude 

from supervised models for each time point. Orthogonal partial least squares discriminant analysis 

(OPLS-DA)[8] was used to identify spectral variables that contributed to discrimination of clinical 

classes (pairwise comparisons between NBS, MAL and RES groups) at each time point. Valid models 

were determined by positive Q2Y value and significant (P<0.05) ANOVA of the cross-validated residuals 

(CV-ANOVA[9]). NMR peaks were considered discriminatory if their correlation with the predictive 

component was 0.45 or greater. Relative concentrations of metabolites were calculated by integrating 

a representative peak of each identified metabolite. Downstream analysis was performed in the R 

software environment[10]. Time-series curves were generated for each discriminatory metabolite 

with “santaR”. In this method, the measurements for each individual are condensed into a smooth, 

continuous function of time and mean curves are then calculated for each study group. Individuals 

with at least 5 data points were included. Significance of the distance between group mean 
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trajectories is tested using a permutation-based method. Changes in metabolite concentrations at 

each time point were represented by log2(Fold Change) where Fold Change (FC) = 

mean(Case)/mean(Control) and significance was assessed by Mann-Whitney U test. Spearman’s 

correlation coefficients (ρ) and P values were calculated for metabolite-clinical associations with the 

package “Hmisc”. Partial correlations were calculated with “ppcor”[11] to adjust for confounding 

variables (maternal age and BMI on maternal measurements and maternal age, BMI and HOMA-IR on 

birthweight percentile). Biospecimens with missing data were removed from the analysis. All P values 

were adjusted (Padj) where necessary to control the false discovery rate according to the Benjamini-

Hochberg method[12]. An alpha of 0.05 was used for P and Padj values. Plots were generated with 

“ggpubr” apart from the correlation network visualisation which was generated with Cytoscape 

version 3.5.1[13].  

Metabolite identification 

Discriminatory NMR peaks were used as driver peaks for statistical total correlation spectroscopy 

(STOCSY)[14] and subset optimization by reference matching (STORM)[15], two algorithms used to 

identify additional peaks corresponding to the same molecule as the driver peak. Chemical shifts, 

multiplicities, and J-couplings for each molecule were matched to an in-house reference database for 

annotation. Ambiguous annotations were confirmed with 2D NMR experiments (J-res, HSQC[16]) and 

by spiking in authentic standards[5].  

Gut bacterial community profiling 

Stool samples were randomised for processing and DNA was extracted from 250 mg stool using the 

PowerLyzer PowerSoil DNA Isolation Kit (Mo Bio, Carlsbad, CA, USA). Bead beating was carried out in 

a Bullet Blender Storm (Chembio Ltd., St. Albans, UK) for 3 min at speed 8. DNA was quantified using 

the Qubit fluorometric assay (Thermo Fisher Scientific, Carlsbad, CA, USA). Sample libraries amplifying 

the V1-V2 region of the 16S rRNA gene were prepared as previously described[17] and were 

sequenced on the Illumina MiSeq platform (San Diego, CA, USA) using the MiSeq Reagent Kit v3 and 
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paired-end 300 bp chemistry. Primer sequences were removed from demultiplexed fastq files using 

cutadapt[18] and raw reads were processed in the R software environment[10] following a published 

workflow[19] which includes amplicon denoising[20]. The denoising algorithm “DADA2” uses error 

profiles generated during the sequencing run to infer real sequence variants; it allows the analysis of 

unique sequences rather than operational taxonomic units (OTUs), or clusters of similar sequences. 

Taxonomy was assigned with reference to the RDP[21] database and assignments of statistically 

significant taxa were confirmed with the SILVA[22] database.  

Statistical analysis of microbiome data 

Functions in the “vegan”  R package were used to calculate Shannon Diversity Indices[23] on data 

rarefied to the minimum sequencing depth and Bray-Curtis dissimilarity[24] on log-transformed 

(pseudocount of 1 added to each value) data. Permutational multivariate analysis of variance 

(PERMANOVA)[25] was applied to the Bray-Curtis matrix to test whether the taxa distributions were 

different between the clinical classes. Changes in relative abundance were tested at each taxonomic 

rank from phylum to genus using the Mann-Whitney U test while differentially abundant 16S rRNA 

gene sequences were identified using “DESeq2” on raw counts[26]. DESeq2 implements a statistical 

model to account for the sparsity of the count matrix and over-dispersion of the counts, two features 

that are characteristic of 16S rRNA gene amplicon sequencing data. For “DESeq2” analysis, data were 

pooled for each individual rather than analysing distinct time points. 

Integrative analysis of metabolic and taxonomic data 

Relationships between the serum, urine and faecal datasets were modelled using the DIABLO method 

in “mixOmics”[27]. This is a multi-block latent variable-based approach which aims to identify 

concordance between multiple datasets. Metabolites significant throughout the time course (serum: 

leucine, isoleucine, isobutyrate, D-β-hydroxybutyrate; urine: PAG, PCS, IS, PHPA, unknown, α-

ketoisovalerate, creatinine) and a subset of bacterial genera (log-transformed; selected using the 

LASSO penalization method implemented in “mixOmics”) were modelled. Sampling points for each 
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individual where matching microbiome and metabolite data were obtained (T1, T2 and T4) were 

included in the model. 

All R code, packages and package versions used for data analysis can be found from page 7 of this 

document. The R Markdown file and data to reproduce the analysis are availale on GitHub 

(https://github.com/ka-west/PBS_manuscript). 
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R script - report generated with “knitr”

R Markdown file and data to reproduce this analysis can be found on GitHub at https://github.com/ka-west/PBS_
manuscript

All code used to generate results within the manuscript and the supplementary files is contained here

• For all P values, an alpha of 0.05 was used
• The Benjamini-Hochberg method was used to control for false discovery rate

Parameters

save_dir <- "output" # where to save figures and tables

if (!dir.exists(save_dir)) { stop(paste("save_dir", save_dir, "does not exist")) }

color_pal <- list(NBS = "purple", RES = "coral2", MAL = "darkturquoise")

Load data

load("PBS_data.Rdata")

ls()

## [1] "color_pal" "integrals" "med_specs_serum" "med_specs_urine"

## [5] "pkgs" "ps_M" "rdp.species" "save_dir"

## [9] "silva.species"

Figure S1: Summary of sampling by individual

Contribution of samples by study group at each time point

mb <- data.frame(Patient.TP = sample_names(ps_M),

faeces = TRUE)

# order individuals by number of time points where samples were collected

ord <- table(integrals$Study.no) %>%

sort(decreasing = TRUE) %>%

names()

# which samples were collected for each individual at each time point

all_samples <- integrals %>%

filter(Time_point != 7) %>%

mutate(urine = ifelse(!is.na(PAG), TRUE, NA),

serum = ifelse(!is.na(isoleucine), TRUE, NA)) %>%

full_join(mb, by = "Patient.TP") %>%

mutate(Sampling = case_when(urine == TRUE & serum == TRUE & faeces == TRUE ~ "Serum/Urine/Faeces",

urine == TRUE & serum == TRUE & is.na(faeces) ~ "Serum/Urine",

urine == TRUE & is.na(serum) & faeces == TRUE ~ "Urine/Faeces",

is.na(urine) & serum == TRUE & faeces == TRUE ~ "Serum/Faeces",

urine == TRUE & is.na(serum) & is.na(faeces) ~ "Urine only",

is.na(urine) & serum == TRUE & is.na(faeces) ~ "Serum only"),

Sampling = factor(Sampling, levels = c("Serum/Urine/Faeces", "Serum/Urine", "Urine/Faeces",

"Serum/Faeces", "Urine only", "Serum only")),

Study.no = factor(Study.no, levels = ord))

Make plot

p <- ggscatter(all_samples,

x = "Study.no",

xlab = "Individual",

y = "Time_point_label",

ylab = "Time point",

color = "Sampling",
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palette = c("chartreuse3", "mediumorchid3", "dodgerblue",

"darkorange", "gold2", "red3"),

size = "Obesity") +

theme(axis.text.x = element_blank(),

axis.ticks.x = element_blank(),

legend.spacing.x = unit(2, "mm"),

legend.title = element_blank()) +

grids(linetype = "dashed", axis = "x", color = "grey")

p <- facet(p, facet.by = "Group", scales = "free", ncol = 1)

Figures S2 and S5: Overlayed median 1H NMR spectra

Serum (Figure S2) and urine (Figure S5) median spectra were overlayed for the three study groups

plot_med_specs <- function(to_plot, save_dir, save_name) {

p <- plot_ly(to_plot, x = ~ppm, y = ~MAL, name = "MAL", type = "scatter",

mode = "lines", alpha = 0.8, color = color_pal$MAL) %>%

add_trace(y = ~RES, name = "RES", mode = "lines", alpha = 0.8, color = color_pal$RES) %>%

add_trace(y = ~NBS, name = "NBS", mode = "lines", alpha = 0.8, color = color_pal$NBS) %>%

layout(xaxis = list(autorange = "reversed", size = 18),

yaxis = list(title = "Integral (a.u.)", size = 18))

htmlwidgets::saveWidget(p, file = file.path(getwd(), save_dir, save_name))

}

# serum

plot_med_specs(med_specs_serum, save_dir, "figureS2_median_spectra_serum.html")

# urine

plot_med_specs(med_specs_urine, save_dir, "figureS5_median_spectra_urine.html")

Figure 1: Longitudinal modelling of metabolite concentrations

Metabolites were considered discriminatory (malabsorptive vs control) if their NMR peaks were correlated (>=0.45) with the
predictive component of a valid OPLS-DA model at any time point. A representative peak for each metabolite was integrated
to calculate relative concentration.

The behavior of key discriminatory metabolites over time was assessed and compared between control and malabsorptive
groups using santaR time-series analysis.

Abbreviations: PAG: phenylacetylglutamine, PCS: p-cresol sulfate, IS: indoxyl sulfate, PHPA: p-hydroxyphenylacetate, unkn:
unknown, aKIV: a-ketoisovalerate, MM: methylmalonate, THB: D-B-hydroxybutyrate, NAGP: N-acetyl glycoprotein

################## DEFINED VARIABLES ##################

# remove restrictive group

input_data <- subset(integrals, integrals$Group != "Restrictive" & integrals$Time_point != 7)

# column names

metab_names <- c("leucine", "isoleucine", "isobutyrate", "NAGP", "glutamine", "THB")

tp_col <- "Time_point"

patient_col <- "Study.no"

group_col <- "Group"

tp_labs <- c("T1", "T2", "T3", "T4", "T5", "T6")

plot_titles <- c("Serum - Leucine",

"Serum - Isoleucine",

"Serum - Isobutyrate",
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"Serum - GlycA",

"Serum - Glutamine",

"Serum - D-beta-hydroxubutyrate")

# see santaR vignette for choosing this value

degrees_freedom <- 5

# add custom locations (y axis) on plots for p values

pval_locs = c(27, 20, 2.1, 5.0, 8.0, 17)

###########################################################

Serum metabolites

# run santaR time series analysis

sp <- santaR_auto_fit(inputData = input_data[,metab_names], ind = input_data[[patient_col]],

time = as.numeric(input_data[[tp_col]]), group = input_data[[group_col]],

df = degrees_freedom)

# generate a plot for each metabolite

for (metab in 1:length(metab_names)) {

p <- santaR_plot(sp[[metab_names[metab]]],

showIndPoint=FALSE,

showIndCurve=FALSE,

xlab = NULL,

ylab = NULL,

colorVect = unlist(color_pal[-2]),

title = plot_titles[metab]) +

scale_x_continuous(breaks = 1:length(tp_labs),

labels = tp_labs) +

theme(plot.title = element_text(size = 6),

legend.position = "None",

axis.text = element_text(size = 5),

panel.grid.major = element_blank(),

panel.grid.minor = element_blank()) +

# add p value

annotate("text",

size = 2,

x = 5,

y = pval_locs[metab],

label = paste("P = ", round(sp[[metab_names[metab]]]$general$pval.dist, digits = 4)))

assign(metab_names[metab], p)

}

Urine metabolites

################## DEFINED VARIABLES ##################

# remove restrictive group

input_data <- subset(integrals, integrals$Group != "Restrictive" & integrals$Time_point != 7)

# column names

metab_names <- c("PAG", "PCS", "IS", "PHPA", "unkn", "valine", "aKIV", "MM", "creatinine")

tp_col <- "Time_point"

patient_col <- "Study.no"

group_col <- "Group"

tp_labs <- c("T1", "T2", "T3", "T4", "T5", "T6")

3

Supplementary material Gut

 doi: 10.1136/gutjnl-2019-319620–8.:10 2020;Gut, et al. West KA



plot_titles <- c("Urine - PAG",

"Urine - PCS",

"Urine - IS",

"Urine - PHPA",

"Urine - Unknown",

"Urine - Valine",

"Urine - alpha-Ketoisovalerate",

"Urine - Methylmalonate",

"Urine - Creatinine")

# see santaR vignette for choosing this value

degrees_freedom <- 5

# add custom locations (y axis) on plots for p values

pval_locs = c(28, 75, 6.5, 6.5, 13, 12, 22, 12, 550)

###########################################################

# run santaR time series analysis

sp <- santaR_auto_fit(inputData = input_data[,metab_names], ind = input_data[[patient_col]],

time = as.numeric(input_data[[tp_col]]), group = input_data[[group_col]],

df = degrees_freedom)

# generate a plot for each metabolite

for (metab in 1:length(metab_names)) {

p <- santaR_plot(sp[[metab_names[metab]]],

showIndPoint=FALSE,

showIndCurve=FALSE,

xlab = NULL,

ylab = NULL,

colorVect = unlist(color_pal[-2]),

title = plot_titles[metab]) +

scale_x_continuous(breaks = 1:length(tp_labs),

labels = tp_labs) +

theme(plot.title = element_text(size = 6),

legend.position = "None",

axis.text = element_text(size = 5),

panel.grid.major = element_blank(),

panel.grid.minor = element_blank()) +

# add p value

annotate("text",

size = 2,

x = 5,

y = pval_locs[metab],

label = paste("P = ", round(sp[[metab_names[metab]]]$general$pval.dist, digits = 4)))

assign(metab_names[metab], p)

}

(1b) Relative concentration of PAG was also higher in neonatal urine from malabsorptive group.

pb <- ggboxplot(integrals,

x = "Group_label",

y = "PAG_B",

color = "Group_label",

ylim = c(-1,11),

add = "jitter",

size = 0.25,

add.params = list(size = 0.5),

palette = unlist(color_pal),
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legend = "none",

xlab = FALSE,

ylab = "Integral (a.u.)",

title = "Neonatal Urine - PAG") +

theme(axis.text=element_text(size = 5),

axis.title = element_text(size = 6),

plot.title = element_text(size = 8, hjust = 0.5)) +

# add significance

stat_compare_means(comparisons = list(c("NBS", "MAL"), c("RES", "MAL")),

label.y = c(7, 9.5),

label.y.npc = "bottom",

label = "p.signif",

method = "wilcox.test")

Combine maternal (1a) serum, urine, and neonatal (1b) urine plots

p <- ggarrange(leucine, isoleucine, isobutyrate ,NAGP, glutamine, THB,

PAG, PCS, IS, PHPA, unkn, valine, aKIV, MM, creatinine, pb)

fig1 <- annotate_figure(p,

left = text_grob("Integral (a.u.)",

size = 10, rot = 90),

bottom = text_grob("Time point",

size = 10))

Table S5: Maternal metabolic changes depend on type of bariatric surgery

Relative concentration changes for each discriminatory metabolite were detailed at all time points for both malabsorptive
and restrictive groups.

################## DEFINED VARIABLES ##################

# input dataframe has one row for each sample, one column for each metabolite (with concentrations or integrals)

input_data <- integrals

# metabolites of interest (match column names in input data)

metab_names <- c("PAG", "PCS", "IS", "PHPA", "unkn", "creatinine", "aKIV", "MM", "valine",

"isoleucine", "leucine", "isobutyrate", "glutamine", "THB", "NAGP")

# column name for time point

tp_col <- "Time_point_label"

# time points to include

time_points <- c("T1", "T2", "T3", "T4", "T5", "T6")

# column name for group

group_col <- "Group"

# case group name

case_names <- c("Restrictive", "Malabsorptive") # function only takes one input group, use for loop

# control group name

con_name <- "No Bariatric Surgery"

###########################################################

Generate table: log2(Fold Change) was calculated where Fold Change (FC) = mean(case)/mean(control). P values are from
Mann-Whitney U test.

univariate_metabolites <- function(input_data,

metab_names,

tp_col,
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time_points,

group_col,

case_name,

con_name) {

# subset data to comparison groups

input_data <- subset(input_data, input_data[[group_col]] %in% c(case_name, con_name))

# create empty matrices to store results

log2FC <- as.data.frame(matrix(nrow = length(time_points), ncol = length(metab_names))) %>%

set_colnames(metab_names) %>%

set_rownames(time_points)

pval <- as.data.frame(matrix(nrow = length(time_points), ncol = length(metab_names))) %>%

set_colnames(metab_names) %>%

set_rownames(time_points)

# Calculate log2(FC) for each metabolite at time points T1 - T6

for (time in time_points){

data <- subset(input_data, input_data[[tp_col]] == time)

con <- subset(data, data[[group_col]] == con_name)

case <- subset(data, data[[group_col]] == case_name)

for (metab in metab_names){

log2fc <- round(log2(mean(case[,metab], na.rm = T)/mean(con[,metab], na.rm = T)), digits = 3)

log2FC[time,metab] <- log2fc

}}

# Calculate p value for each metabolite at time points T1 - T6

for (time in time_points){

for (metab in metab_names){

data <- subset(input_data,

input_data[[tp_col]] == time & input_data[[group_col]] %in% c(case_name, con_name))

form <- formula(paste(metab, "~", group_col))

pval[time,metab] <- wilcox.test(form, data, exact = FALSE)$p.value

}}

# adjust p values

log2FC.list <- data.frame(Time_point = rep(time_points, length(metab_names)),

bind_cols(gather(log2FC, "Metabolite", "log2FC"),

gather(pval, "Metab", "p.val")))

log2FC.list$p.adj.BH <- p.adjust(log2FC.list$p.val, method = "BH")

log2FC.list$Group <- case_name

return(log2FC.list[,-which(colnames(log2FC.list) == "Metab")])

}

Generate table for each case group

tableS5 <- NULL

for (gr in case_names) {

idx <- univariate_metabolites(input_data,

metab_names,

tp_col,

time_points,

group_col,

case_name = gr,

con_name)

tableS5 <- rbind(tableS5, idx)

}

Format table
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# change p values to scientific notation

tableS5_formatted <- tableS5 %>%

mutate(P = formatC(tableS5$p.val, format = "e", digits = 2),

Padj = formatC(tableS5$p.adj.BH, format = "e", digits = 2))

# change non-significant p values to NS

tableS5_formatted$P[as.numeric(tableS5_formatted$P) > 0.05] <- "NS"

tableS5_formatted$Padj[as.numeric(tableS5_formatted$Padj) > 0.05] <- "NS"

Figure S3: Maternal metabolic changes depend on type of bariatric surgery

Graphical representation of the changes

################## DEFINED VARIABLES ##################

input_data <- tableS5_formatted %>%

# label significant data

mutate(plot_sig = ifelse(Padj == "NS", NA, "*"),

Group_label = case_when(Group == "Malabsorptive" ~ "MAL",

Group == "Restrictive" ~ "RES"),

# Change names for plot titles

Metabolite = plyr::mapvalues(Metabolite,

from = c("THB", "NAGP", "unkn", "aKIV", "MM", "glutamine",

"creatinine", "isobutyrate", "leucine", "isoleucine",

"valine"),

to = c("D-beta-hydroxybutyrate", "GlycA",

"Unknown", "alpha-Ketoisovalerate", "Methylmalonate",

"Glutamine", "Creatinine", "Isobutyrate", "Leucine",

"Isoleucine", "Valine")),

# order time points

Time_point = factor(Time_point, levels = c("T6", "T5", "T4", "T3", "T2", "T1")),

# add which biofluid metabolites were identified in

biofluid = ifelse(Metabolite %in% c("PAG", "PCS", "IS", "PHPA", "Unknown", "Valine",

"Creatinine", "alpha-Ketoisovalerate", "Methylmalonate"),

"urine",

"serum"))

# column names

tp_col <- "Time_point"

metab_col <- "Metabolite"

s_type_col <- "biofluid"

group_col <- "Group_label"

plot_val <- "log2FC"

label_sig <- "plot_sig"

figure_labels <- list(serum = "a", urine = "b")

###########################################################

Plot effect sizes and significance

for (s_type in names(figure_labels)) {

# subset to appropriate biofluid type

to_plot <- subset(input_data, input_data[[s_type_col]] == s_type)

# plot log2FC for both groups

p <- ggdotchart_not_ordered(to_plot,

x = tp_col,

xlab = "",

y = plot_val,
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ylab = "",

rotate = TRUE,

color = group_col,

palette = unlist(color_pal),

dot.size = 1.5,

label = label_sig,

font.label = list(color = "black",

size = 10,

vjust = 0.72),

add = "segments",

add.param = list(color = "lightgray",

size = 0.4)) +

ylim(c(min(to_plot$log2FC), max(to_plot$log2FC))) +

geom_hline(yintercept = 0,

linetype = 2,

size = 0.4,

color = "lightgray") +

theme(legend.title = element_blank(),

legend.text=element_text(size = 6),

legend.key.size = unit(3, "mm"),

axis.text=element_text(size = 5),

axis.line = element_line(size = 0.4),

axis.ticks = element_line(size = 0.4)) +

rotate_x_text(55)

# separate plots for each metabolite

p <- facet(p,

facet.by = metab_col,

nrow = 2,

scales = "free_x",

panel.labs.background = list(fill = "ivory2",

color = "black"),

panel.labs.font = list(size = 4,

face ="bold"))

# add figure labels and axis annotations

p <- annotate_figure(p,

fig.lab.pos = "top.left",

fig.lab = figure_labels[[s_type]],

fig.lab.size = 10,

fig.lab.face = "bold",

left = text_grob("Time point",

size = 6,

rot = 90, vjust = 4),

bottom = text_grob("log2(Fold Change)",

size = 6, vjust = -4))

assign(paste0(s_type, "_dotplot"), p)

}

Combine serum and urine plots

figS3 <- ggarrange(serum_dotplot, urine_dotplot,

ncol = 2,

widths = c(1, 1.5))

Figure S7: Relative concentrations of urinary host-microbial co-metabolites vary depending on bariatric surgery sub-
type

Comparison of key discriminatory metabolites between study sub-groups.
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################## DEFINED VARIABLES ##################

input_data <- integrals %>%

# separate restrictive group into band and sleeve

mutate(Group_label = case_when(Group_label == "NBS" ~ "NBS",

Group_label == "MAL" ~ "MAL",

Group_label == "RES" & Bariatric.surgery == "BAND" ~ "BAND",

Group_label == "RES" & Bariatric.surgery == "SLEEVE" ~ "SLEEVE")) %>%

# order sub-groups

mutate(Group_label = factor(Group_label, levels = c("NBS", "BAND", "SLEEVE", "MAL"))) %>%

# remove neonatal samples

filter(Time_point_label != "T7")

# column names

metab_names <- c("PAG", "PCS", "IS", "PHPA", "unkn")

tp_col <- "Time_point_label"

group_col <- "Group_label"

colors <- list(NBS = "purple", BAND = "coral2", SLEEVE = "coral2", MAL = "darkturquoise")

###########################################################

For each metabolite, plot relative concentrations at each time point.

for (metab in metab_names) {

for (tp in unique(input_data[[tp_col]])) {

p <- ggboxplot(subset(input_data, input_data[[tp_col]] == tp),

size = 0.2,

group_col,

metab,

color = group_col,

palette = unlist(colors),

add = "jitter",

add.params = list(alpha = 0.5,

size = 0.3),

xlab = FALSE,

ylab = paste(metab, tp)) +

theme(legend.position = "None",

axis.text=element_text(size = 5),

axis.title = element_text(size = 6),

axis.line = element_line(size = 0.4),

axis.ticks = element_line(size = 0.4)) +

rotate_x_text(angle = 45)

p$layers[[1]]$geom_params$outlier.size <- 0.3 # change size of outlier points

assign(paste0(metab, "_", tp, "_boxplot"), p)

}

}

Combine all plots together

figS7 <- ggarrange(PAG_T1_boxplot, PAG_T2_boxplot, PAG_T3_boxplot, PAG_T4_boxplot,

PAG_T5_boxplot, PAG_T6_boxplot, PCS_T1_boxplot, PCS_T2_boxplot,

PCS_T3_boxplot, PCS_T4_boxplot, PCS_T5_boxplot, PCS_T6_boxplot,

IS_T1_boxplot, IS_T2_boxplot, IS_T3_boxplot, IS_T4_boxplot,

IS_T5_boxplot, IS_T6_boxplot, PHPA_T1_boxplot, PHPA_T2_boxplot,

PHPA_T3_boxplot, PHPA_T4_boxplot, PHPA_T5_boxplot, PHPA_T6_boxplot,

unkn_T1_boxplot, unkn_T2_boxplot, unkn_T3_boxplot, unkn_T4_boxplot,

unkn_T5_boxplot, unkn_T6_boxplot)
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Figure 2: Gut bacterial alterations in malabsorptive patients

################## DEFINED VARIABLES ##################

# input data is phyloseq object

input_data <- ps_M

# column names

tp_col <- "Time_point_label"

group_col <- "Group_label"

adiv_measure <- "Shannon"

bdiv_measure <- "bray"

ordination_meth <- "MDS"

set.seed(71)

###########################################################

Calculate alpha-diversity

# normalize by rarefying to minimum sequencing depth

data <- input_data %>%

rarefy_even_depth(sample.size = min(sample_sums(input_data)), verbose = FALSE, replace = FALSE)

# calculate alpha diversity

alpha_div <- estimate_richness(data, split = TRUE, measures = adiv_measure)

# add variables needed for plot

alpha_div$Time_point <- sample_data(data)[[tp_col]]

alpha_div$Group <- sample_data(data)[[group_col]]

Calculate beta-diversity

# use log transformation normalization to overcome differences in sequencing depth

data <- input_data %>%

transform_sample_counts(function(x) {log(x+1)})

bdiv <- phyloseq::distance(data, bdiv_measure)

MDS <- ordinate(data, ordination_meth, bdiv)

# extract % variance explained for axis labels

ord <- plot_ordination(data, MDS)[["labels"]]

(2a) Comparison of Shannon Index between malabsorptive and control groups

am <- facet(ggboxplot(alpha_div,

x = "Group",

y = adiv_measure,

color = "Group",

add = "jitter",

add.params = list(alpha = 0.5),

size = 0.5,

palette = unlist(color_pal),

legend = "none",

ylim = c(3.3,5.2),

xlab = FALSE,

ylab = "Shannon's Diversity Index (H)") +

theme(axis.text = element_text(size = 6),

axis.title = element_text(size = 6)) +

# add significance

stat_compare_means(comparisons = list(c("NBS", "MAL")),
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label = "p.signif",

method = "wilcox.test",

label.y = 5.1,

hide.ns = TRUE),

facet.by = "Time_point",

panel.labs.background = list(fill = "ivory2", color = "black"),

panel.labs.font = list(size = 7, face ="bold"))

(2b) Bray-Curtis dissimilarity with PCoA ordination

# plot PCoA

to_plot <- plot_ordination(data, MDS, justDF = TRUE)

bm <- ggscatter(to_plot,

x = "Axis.1",

y = "Axis.2",

color = "Group_label",

alpha = 0.6,

ggtheme = theme_bw(),

shape = "Time_point_label",

size = 1.5,

ellipse = TRUE,

ellipse.level = 0.95,

ellipse.type = "norm",

ellipse.alpha = 0) +

scale_colour_manual(values = unlist(color_pal)) +

labs(x = ord$x,

y = ord$y) +

theme(legend.position = "none",

axis.title =element_text(size=6),

axis.text = element_text(size = 6))

# permanova test

adonis_res <- adonis(bdiv ~ Group, data.frame(sample_data(data)))

# add permanova p value

bm <- bm +

annotate("text",

size = 2,

x = 0.3,

y = 0.32,

label = paste("P = ", round(adonis_res$aov.tab$`Pr(>F)`[1], digits = 4)))

# put 2a and 2b together

plot1 <- ggarrange(am, bm, labels = c("a", "b"), widths = c(2,1))

(2c) Differential abundance (malabsorptive vs control) at each taxonomic level. Effect sizes are log2(FC) and P values are
from Mann-Whitney U test.

################## DEFINED VARIABLES ##################

# input data is phyloseq object

data <- ps_M

tp_col <- "Time_point_label"

time_points <- c("T1", "T2", "T4")

group_col <- "Group_label"

case_name <- "MAL"

con_name <- "NBS"

# 16S data transformation parameters
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# taxa without at least min_counts in at least prev_filt (%) of samples will be removed

min_counts <- 5

prev_filt <- 0.1

###########################################################

Generate differential abundance table (Table S6)

MWU <- NULL

for (rank in c("Phylum", "Class", "Order", "Family", "Genus")){

for (time in time_points){

ps_obj <- data %>%

tax_glom(rank) %>%

# prevalence filter

filter_taxa(function(x) sum(x > min_counts) > (prev_filt*length(x)), TRUE) %>%

# normalize by total sum scaling

transform_sample_counts(function(x) x/sum(x)) %>%

# subset to time point

subset_samples(Time_point_label == time)

tax <- data.frame(as(tax_table(ps_obj), "matrix"))

abund <- data.frame(as(otu_table(ps_obj), "matrix")) %>%

# change column names to names at current rank

set_colnames(gsub("/", ".", tax[,which(colnames(tax)==rank)]))

# add group column

abund$Group <- sample_data(ps_obj)[[group_col]]

# test differences between groups for every taxon

for (i in c(1:(ncol(abund)-1))) {

taxa <- colnames(abund)[1:(ncol(abund)-1)]

form <- formula(paste(taxa[i], "~ Group"))

mw <- wilcox.test(form, abund, exact = FALSE)

idx <- tibble(Rank = rank,

Time_point = time,

Taxon = taxa[i],

Mean_rel_abund_case = mean(subset(abund, abund$Group == case_name)[,i]),

Mean_rel_abund_cont = mean(subset(abund, abund$Group == con_name)[,i]),

pval = mw$p.value,

log2FC = log2(mean(subset(abund, abund$Group == case_name)[,i])/

mean(subset(abund, abund$Group == con_name)[,i]))

)

MWU <- rbind(MWU, idx)

}

}

}

# multiple hypothesis testing correction

MWU$p.adj.BH <- p.adjust(MWU$pval, method = "BH")

# filter to significant taxa; excluding taxa that are not observed in a group (zero counts)

MWU_filt <- subset(MWU, MWU$p.adj.BH < 0.05 & abs(MWU$log2FC) != Inf)

Barplots for each rank

# color related taxa

palette <- list(Proteobacteria = "cyan4",

Bacilli = "khaki4",

Actinomycetales = "chocolate3",

Anaerostipes = "thistle4",
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NS = "grey")

diff_abund <- MWU %>%

# add x-axis plot label

mutate(Label = str_replace(paste0(Taxon, "_", Time_point),

"Escherichia\\.", "Escherichia/"),

# group taxa for coloring

Taxa_group = case_when(p.adj.BH > 0.05 ~ "NS",

grepl("Proteobact|Gammaprot|Enterobacteria|Escherichia|Pasteurell|Haemophil",

Taxon) ~ "Proteobacteria",

Taxon %in% c("Micrococcaceae", "Rothia", "Actinomycetales") ~ "Actinomycetales",

grepl("Bacill|Enteroc|Strepto|Lactobacill|Carnobact|Granulicat",

Taxon) ~ "Bacilli",

grepl("Bacteroid|Butyricimonas", Taxon) ~ "Bacteroidetes",

Taxon == "Anaerostipes" ~ "Anaerostipes",

grepl("Holdeman|Solobact", Taxon) ~ "Erysipelotrichaceae",

grepl("Veillonella|Acidaminococcus", Taxon) ~ "Negativicutes",

grepl("Clostrid", Taxon) ~ "Clostridia"))

# factor for correct ordering on plot

diff_abund$Rank <- factor(diff_abund$Rank, levels = c("Phylum", "Class", "Order", "Family", "Genus"))

diff_abund$Taxa_group <- factor(diff_abund$Taxa_group, levels = c("Proteobacteria",

"Bacilli",

"Bacteroidetes",

"Clostridia",

"Negativicutes",

"Actinomycetales",

"Erysipelotrichaceae",

"Anaerostipes",

"NS"))

# remove taxa only significant at one time point

MWU_plot <- subset(diff_abund, diff_abund$Taxon %in%

names(which(table(MWU_filt$Taxon) > 1)))

# top barplots

p <- ggbarplot(subset(MWU_plot, MWU_plot$Rank %in% c("Phylum", "Class", "Order")),

x = "Label",

y = "log2FC",

lab.size = 4,

fill = "Taxa_group",

color = "white",

palette = unlist(palette),

ylab = "log2(Fold Change)",

lab.vjust = .5,

xlab = FALSE,

order = sort(MWU_plot$Label)) +

theme(axis.title = element_text(size=6),

axis.text = element_text(size = 6),

legend.position = "none") +

rotate_x_text(55)

p <- facet(p,

facet.by = "Rank",

scales = "free_x",

nrow = 1,

space = "free_x",

panel.labs.background = list(fill = "ivory2", color = "black"),

panel.labs.font = list(size = 8, face ="bold"))
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# bottom barplots

q <- ggbarplot(subset(MWU_plot, MWU_plot$Rank %in% c("Family", "Genus")),

x = "Label",

y = "log2FC",

lab.size = 4,

fill = "Taxa_group",

color = "white",

palette = unlist(palette),

ylab = "log2(Fold Change)",

lab.vjust = .5,

xlab = FALSE,

order = sort(MWU_plot$Label)) +

theme(axis.title = element_text(size=6),

axis.text = element_text(size = 6),

legend.position = "right",

legend.text = element_text(size = 6),

legend.title = element_text(size = 8),

legend.key.size = unit(4, "mm")) +

rotate_x_text(55) +

geom_hline(yintercept = 0, linetype="dashed", size = 0.4)

q <- facet(q,

facet.by = "Rank",

scales = "free_x",

nrow = 1,

space = "free_x",

panel.labs.background = list(fill = "ivory2", color = "black"),

panel.labs.font = list(size = 7, face ="bold"))

# combine barplots

plot2 <- ggarrange(p, q, nrow = 2)

Combine (2c) with (2a) and (2b)

fig2 <- ggarrange(plot1, plot2,

nrow = 2,

heights = c(1.2,2),

labels = c("", "c"))

Table S7: Differentially abundant amplicon sequence variants

Differential abundance of amplicon sequence variants was assessed by DESeq2. Taxonomic assignments at species level were
compared between SILVA and RDP databases.

################## DEFINED VARIABLES ##################

input_data <- merge_samples(ps_M, "Study.no")

# fix group labels - merging samples changes labels to numbers

sample_data(input_data)$Group <- str_replace_all(sample_data(input_data)$Group,

c("1" = "Control",

"2" = "Malabsorptive"))

sample_data(input_data)$Group <- factor(sample_data(input_data)$Group, levels = c("Control", "Malabsorptive"))

# 16S data transformation parameters

# taxa without at least min_counts in at least prev_filt (%) of samples will be removed

min_counts <- 5

prev_filt <- 0.1

alpha <- 0.05
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gen <- c("Enterococcus", "Escherichia/Shigella", "Streptococcus", "Rothia")

###########################################################

Make table with differential abundance and species assignments

# prevalence filter

ps_trim <- input_data %>%

filter_taxa(function(x) sum(x > min_counts)> (prev_filt*length(x)), TRUE)

# run DESeq2

DDS <- phyloseq_to_deseq2(ps_trim, ~ Group)

DDS <- estimateSizeFactors(DDS, type = "poscounts")

DDS <- estimateDispersions(DDS, fitType = "local")

DDS <- DESeq(DDS, fitType = "local")

# results

res <- results(DDS)

res <- res[order(res$padj, na.last=NA), ]

sigtab <- res[(res$padj < alpha), ]

sigtab <- cbind(as(sigtab, "data.frame"), as(tax_table(ps_trim)[rownames(sigtab), ], "matrix"))

# keep only genera of interest

sigtab <- subset(sigtab, sigtab$Genus %in% gen)

keep <- which(row.names(rdp.species) %in% row.names(sigtab))

rdp.species <- data.frame(rdp.species)

rdp.species$seq <- row.names(rdp.species)

silva.species <- data.frame(silva.species)

silva.species$seq <- row.names(silva.species)

# combine RDP and SILVA species assignments

species_assign <- merge(rdp.species[keep, c(6:8)], silva.species[keep, c(6:8)], by = "seq")

# combine DESeq2 results with species assignments

sigtab$seq <- row.names(sigtab)

species_assign <- merge(sigtab[,c(1:6,13)], species_assign, by = "seq")

Figure 3: Integration of serum, urine and faecal profiles

Relative concentrations of key discriminatory metabolites were integrated with genera abundances using “DIABLO”, a
method implemented in mixOmics.

################## DEFINED VARIABLES ##################

# input data is phyloseq object

input_MB <- ps_M %>%

tax_glom("Genus") %>%

transform_sample_counts(function(x) {log(x+1)})

# remove neonatal samples & subset to individuals with microbiome data

input_metab <- integrals %>%

filter(Time_point != 7)

input_metab <- left_join(data.frame(Patient.TP = sample_names(input_MB)),

input_metab,

by = "Patient.TP")

S_metab_names <- c("leucine", "isoleucine", "isobutyrate", "THB")

U_metab_names <- c("PAG", "PCS", "IS", "PHPA", "unkn", "aKIV", "creatinine")
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# number of genera to keep in model

n_gen <- 10

###########################################################

Prepare datasets

tax <- as(tax_table(input_MB), "matrix") %>%

data.frame(stringsAsFactors = F)

F_abund_mat <- as(otu_table(input_MB), "matrix") %>%

data.frame() %>%

set_colnames(tax$Genus)

S_NMR_mat <- input_metab %>%

select(one_of(S_metab_names)) %>%

set_rownames(input_metab$Patient.TP)

U_NMR_mat <- input_metab %>%

select(one_of(U_metab_names)) %>%

set_rownames(input_metab$Patient.TP)

Build model

X <- list(Urine = U_NMR_mat,

Serum = S_NMR_mat,

Faeces = F_abund_mat)

Y <- input_metab[, "Group_label"]

# only model top n taxa for each component

list.keepX <- list(Urine = ncol(U_NMR_mat), Serum = ncol(S_NMR_mat), Faeces = c(n_gen, n_gen))

# multi-block pls-da

m <- block.splsda(X, Y,

keepX = list.keepX,

near.zero.var = TRUE)

Plot sample scores for each dataset. Separation between classes is on Component 1.

ggsave(plotIndiv(m,

legend = TRUE,

X.label = "Component 1",

Y.label = "Component 2",

legend.title = '',

style = "lattice",

ind.names = FALSE,

col.per.group = unlist(color_pal)[-2],

ellipse = TRUE,

legend.position = "top",

pch = 20, alpha = 0.7,

size.axis = 0.5, size.xlabel = 0.9, size.ylabel = 0.9,

size.legend = 0.8) +

theme(legend.box.background = element_rect()),

filename = file.path(save_dir, "figure3a_integration_scores.pdf"),

height = 3, width = 6)

Plot correlations between variables and components highlighting variables with high correlation on either component.

var_plot <- plotVar(m, plot = F) %>%

mutate(Plot_label = plyr::mapvalues(names,

from = c("THB", "unkn", "aKIV", "creatinine",

"isobutyrate", "leucine", "isoleucine"),
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to = c("D-beta-HB", "Unknown",

"alpha-Ketoisovalerate", "Creatinine",

"Isobutyrate", "Leucine", "Isoleucine")),

Plot_label = case_when(abs(x) > 0.5 | abs(y) >= 0.5 ~ Plot_label),

Plot_alpha = ifelse(is.na(Plot_label), "|r|<0.5", "|r|>=0.5"))

ggsave(ggscatter(var_plot, x = "x", y = "y",

color = "Block", palette = c("darkolivegreen", "darkgoldenrod3", "rosybrown3"),

label = "Plot_label", repel = TRUE,

font.label = c(5, "plain"),

label.rectangle = FALSE,

alpha = "Plot_alpha",

xlab = "Component 1", ylab = "Component 2",

show.legend.text = FALSE) +

xlim(c(-1, 1)) +

ylim(c(-1,1)) +

geom_hline(yintercept = 0,

linetype = 2,

size = 0.4,

color = "lightgray") +

geom_vline(xintercept = 0,

linetype = 2,

size = 0.4,

color = "lightgray") +

theme(legend.title = element_blank(),

axis.text = element_text(size = 5),

axis.title = element_text(size = 8),

legend.text = element_text(size = 5)),

filename = file.path(save_dir, "figure3b_integration_variables.pdf"),

height = 3.5, width = 3.5)

Plot correlations between datasets for Component 1.

ggsave(circosPlot(m,

cutoff=0.5,

comp = 1,

color.cor = c("red", "blue"),

color.blocks = c("rosybrown3", "darkgoldenrod3", "darkolivegreen"),

showIntraLinks = FALSE,

legend = TRUE,

line = FALSE,

size.labels = 0.01,

size.variables = 0.5,

var.names = list(Urine = c("PAG","PCS","IS","PHPA","Unknown","alpha-KIV","Creatinine"),

Serum = c("Leucine", "Isoleucine", "Isobutyrate", "D-beta-HB"),

Faeces = m$names$colnames$Faeces),

size.legend = 0.5) +

theme(legend.box.background = element_rect()),

filename = file.path(save_dir, "figure3c_integration_circos.pdf"),

height = 4, width = 4.5)

Figure 4: Relative concentrations of metabolites correlate with maternal insulin resistance and fetal/birth weight

Correlations (Spearman) were calculated between metabolite relative concentrations and clinical measures. Netowrk file was
generated for Cytoscape input.

################## DEFINED VARIABLES ##################

time_points <- 1:6

input_data <- subset(integrals, integrals$Time_point %in% time_points)
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tp_col <- "Time_point_label"

# column names

metab_names <- c("PAG", "PCS", "IS", "isoleucine", "leucine", "isobutyrate")

clin_varT1 <- c("Fast Maternal Insulin (microU/ml)",

"Maternal HOMA-IR",

"Fast Maternal Gluc (mmol/L)",

"GA..days.",

"BMI.1",

"Age")

clin_varT2 <- c("Fast Maternal Insulin (microU/ml)",

"Maternal HOMA-IR",

"Fast Maternal Gluc (mmol/L)",

"GA..days.",

"BMI2",

"EFW2-centile",

"Age")

clin_varT3 <- c("Fast Maternal Insulin (microU/ml)",

"Maternal HOMA-IR",

"Fast Maternal Gluc (mmol/L)",

"GA..days.",

"BMI3",

"Age")

clin_varT4 <- c("Fast Maternal Insulin (microU/ml)",

"Maternal HOMA-IR",

"Fast Maternal Gluc (mmol/L)",

"GA..days.",

"BMI4",

"EFW4-centile",

"Age")

clin_varT5 <- c("Fast Maternal Insulin (microU/ml)",

"Maternal HOMA-IR",

"Fast Maternal Gluc (mmol/L)",

"GA..days.",

"BMI5",

"EFW5-centile",

"Age")

clin_varT6 <- c("Fast Maternal Insulin (microU/ml)",

"Maternal HOMA-IR",

"Fast Maternal Gluc (mmol/L)",

"GA..days.",

"BMI6",

"BW.centile",

"Age")

###########################################################

Generate network file

# use T5 BMI for T6 (visits are couple weeks apart, BMI not measured at T6)

input_data$BMI6 <- input_data$BMI5

# format data for correlation at each time point

for (time in unique(input_data[[tp_col]])) {

idx <- subset(input_data, input_data[[tp_col]] == time)

# keep only columns to correlate

idx <- idx[,which(colnames(idx) %in% c(metab_names, get(grep(paste0("clin_var", time), ls(), value = T))))]

# fix column names so they all match

colnames(idx) <- str_replace_all(colnames(idx), c("BMI.*" = "BMI", ".*centile" = "EFW.BW"))

if (!"EFW.BW" %in% colnames(idx)) { idx$EFW.BW <- NA }
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# tidy column names

colnames(idx) <- make.names(colnames(idx))

# arrange columns in the same order

idx <- idx[,c(metab_names,

"Age",

"BMI",

"GA..days.",

"Fast.Maternal.Insulin..microU.ml.",

"Fast.Maternal.Gluc..mmol.L.",

"Maternal.HOMA.IR",

"EFW.BW")]

# make sure all columns are numeric

idx <- sapply(idx, as.numeric)

assign(paste(time), idx)

}

# remove confounders

for (time in unique(input_data[[tp_col]])) {

idx <- get(paste(time))

assign(paste0(time, "_to_corr"), idx[,-c(which(colnames(idx) %in% c("Age", "BMI")))])

}

# correlation at each time point

corr_all <- NULL

corr_pval <- NULL

for (cor in time_points) {

idx <- get(grep(paste0(cor,"_to_corr"), ls(), value = T))

rcorr <- rcorr(idx, type = "spearman")

coef <- round(rcorr$r,2)

coef <- coef[c(which(rownames(coef) %in% metab_names)), c(which(!colnames(coef) %in% metab_names))]

row.names(coef) <- paste0(metab_names, "_T", cor)

pval <- rcorr$P

pval <- pval[c(which(rownames(pval) %in% metab_names)), c(which(!colnames(pval) %in% metab_names))]

row.names(pval) <- paste0(metab_names, "_T", cor)

corr_all <- rbind(corr_all, coef)

corr_pval <- rbind(corr_pval, pval)

}

# change to long format and adjust p values

corr_all <- melt(corr_all, value.name = "spearman")

corr_all <- subset(corr_all, !is.na(corr_all$spearman))

corr_pval <- melt(corr_pval, value.name = "p.val")

corr_pval <- subset(corr_pval, !is.na(corr_pval$p.val))

corr_pval$p.adj.BH <- p.adjust(corr_pval$p.val, method = "BH")

corr_metaVmetab <- cbind(corr_all, corr_pval[,c(3:4)])

corr_metaVmetab_sig <- subset(corr_metaVmetab, corr_metaVmetab$p.adj.BH < 0.05)

# convert to graph for cytoscape visualisation

cytoscape <- corr_metaVmetab_sig[,c(1:3)] %>%

mutate(Strength = case_when(abs(spearman) < 0.4 ~ "0.3-0.4",

abs(spearman) >= 0.4 ~ "0.4-0.5"),

Direction = case_when(spearman > 0 ~ "pos",

spearman < 0 ~ "neg")) %>%

rename(from = Var1, to = Var2, weight = spearman)

net <- graph.data.frame(cytoscape, directed = FALSE)

write_graph(net, file.path(save_dir, "cormat_cytoscape.gml"), format = "gml")
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Table S8: Relative concentrations of metabolites correlate with maternal insulin resistance and fetal/birth weight

Includes partial correlations to adjust for the effect of maternal age and BMI as well as any effect of maternal insulin resistance
on the baby’s weight.

corr_metaVmetab_sig$partial <- NA

corr_metaVmetab_sig$part.pval <- NA

for (part_cor in c(1:nrow(corr_metaVmetab_sig))) {

var1 <- gsub("_T.*", "", corr_metaVmetab_sig[part_cor,1])

var2 <- corr_metaVmetab_sig[part_cor,2]

idx <- get(paste0(gsub(".*_", "", corr_metaVmetab_sig[part_cor,1])))

if (var2 == "EFW.BW") {

conf <- which(colnames(idx) %in% c("Age", "BMI", "Maternal.HOMA.IR"))

# remove any rows with missing data

idx <- subset(idx,

!is.na(idx[,which(colnames(idx)==var1)]) &

!is.na(idx[,which(colnames(idx)==var2)]) &

!is.na(idx[,which(colnames(idx)=="Maternal.HOMA.IR")]) &

!is.na(idx[,which(colnames(idx)=="BMI")]) &

!is.na(idx[,which(colnames(idx)=="Age")]))

} else {

conf <- which(colnames(idx) %in% c("Age", "BMI"))

# remove any rows with missing data

idx <- subset(idx,

!is.na(idx[,which(colnames(idx)==var1)]) &

!is.na(idx[,which(colnames(idx)==var2)]) &

!is.na(idx[,which(colnames(idx)=="BMI")]) &

!is.na(idx[,which(colnames(idx)=="Age")]))

}

# partial correlations

part_corr <- pcor.test(idx[,which(colnames(idx)==var1)],

idx[,which(colnames(idx)==var2)],

idx[,conf],

method = "spearman")

corr_metaVmetab_sig$partial[part_cor] <- part_corr$estimate

corr_metaVmetab_sig$part.pval[part_cor] <- part_corr$p.value

corr_metaVmetab_sig$part.pval.adj <- p.adjust(corr_metaVmetab_sig$part.pval, method = "BH")

}

for (col in c("p.val","p.adj.BH","part.pval","part.pval.adj")) {

corr_metaVmetab_sig[as.numeric(corr_metaVmetab_sig[[col]]) > 0.05, col] <- "NS"

}

Figure S8: Key metabolites are not associated with percentage of weight lost or length of time since surgery in malab-
sorptive patients

to_cor <- integrals %>%

filter(Group_label == "MAL",

Time_point != 7)

for (variab in c("perc_wl", "Months_betw_op_concep")) {

for (metab in c("PAG", "PCS", "IS")) {

p <- ggscatter(to_cor,

x = variab,

xlab = str_replace_all(variab,

c("perc_wl" = "Post-surgery weight loss (%)",
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"Months_betw_op_concep" =

"Time between operation and conception (months)")),

y = metab,

ylab = paste(metab, "(a.u.)"),

facet.by = "Time_point_label",

alpha = 0.7,

size = 1,

color = "darkturquoise",

cor.coef = TRUE,

cor.coeff.args = list(method = "spearman"),

cor.coef.size = 1.5) +

theme(axis.text = element_text(size = 6),

axis.title = element_text(size = 7))

assign(paste0(metab, "_", variab), p)

}

}

p <- ggarrange(PAG_perc_wl, PCS_perc_wl, IS_perc_wl,

PAG_Months_betw_op_concep, PCS_Months_betw_op_concep, IS_Months_betw_op_concep)

Session Info

sessionInfo()

## R version 3.5.0 (2018-04-23)

## Platform: x86_64-apple-darwin15.6.0 (64-bit)

## Running under: macOS 10.15.1

##

## Matrix products: default

## BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib

## LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

##
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## [1] en_GB.UTF-8/en_GB.UTF-8/en_GB.UTF-8/C/en_GB.UTF-8/en_GB.UTF-8

##
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## [1] parallel stats4 stats graphics grDevices utils datasets

## [8] methods base

##

## other attached packages:

## [1] plotly_4.8.0 reshape2_1.4.3

## [3] ppcor_1.1 igraph_1.2.4

## [5] Hmisc_4.2-0 Formula_1.2-3

## [7] survival_2.44-1.1 mixOmics_6.6.2

## [9] MASS_7.3-51.4 DESeq2_1.22.2

## [11] SummarizedExperiment_1.12.0 DelayedArray_0.8.0

## [13] BiocParallel_1.16.6 matrixStats_0.54.0

## [15] Biobase_2.42.0 GenomicRanges_1.34.0

## [17] GenomeInfoDb_1.18.2 IRanges_2.16.0

## [19] S4Vectors_0.20.1 BiocGenerics_0.28.0

## [21] vegan_2.5-4 lattice_0.20-38

## [23] permute_0.9-5 ggpubr_0.2

## [25] magrittr_1.5 phyloseq_1.26.1

## [27] santaR_1.0 forcats_0.4.0

## [29] stringr_1.4.0 dplyr_0.8.0.1

## [31] purrr_0.3.2 readr_1.3.1

## [33] tidyr_0.8.3 tibble_2.1.1

## [35] ggplot2_3.2.1 tidyverse_1.2.1

##

## loaded via a namespace (and not attached):

## [1] colorspace_1.4-1 htmlTable_1.13.1 corpcor_1.6.9
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## [4] XVector_0.22.0 base64enc_0.1-3 rstudioapi_0.10

## [7] bit64_0.9-7 RSpectra_0.14-0 AnnotationDbi_1.44.0

## [10] lubridate_1.7.4 xml2_1.2.0 codetools_0.2-16

## [13] splines_3.5.0 doParallel_1.0.14 geneplotter_1.60.0

## [16] knitr_1.22 shinythemes_1.1.2 ade4_1.7-13

## [19] jsonlite_1.6 annotate_1.60.1 broom_0.5.2

## [22] cluster_2.0.8 shiny_1.3.0 compiler_3.5.0

## [25] httr_1.4.0 backports_1.1.3 assertthat_0.2.1
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## [31] later_0.8.0 acepack_1.4.1 htmltools_0.3.6

## [34] tools_3.5.0 gtable_0.3.0 glue_1.3.1

## [37] GenomeInfoDbData_1.2.0 Rcpp_1.0.1 cellranger_1.1.0

## [40] Biostrings_2.50.2 multtest_2.38.0 ape_5.3

## [43] nlme_3.1-138 iterators_1.0.10 xfun_0.6

## [46] rvest_0.3.2 mime_0.6 XML_3.98-1.19

## [49] zlibbioc_1.28.0 scales_1.0.0 hms_0.4.2

## [52] promises_1.0.1 biomformat_1.10.1 rhdf5_2.26.2

## [55] RColorBrewer_1.1-2 yaml_2.2.0 memoise_1.1.0

## [58] gridExtra_2.3 rpart_4.1-13 RSQLite_2.1.1

## [61] latticeExtra_0.6-28 stringi_1.4.3 genefilter_1.64.0

## [64] foreach_1.4.4 checkmate_1.9.1 rlang_0.3.4

## [67] pkgconfig_2.0.2 bitops_1.0-6 evaluate_0.13

## [70] Rhdf5lib_1.4.3 htmlwidgets_1.3 bit_1.1-14

## [73] tidyselect_0.2.5 plyr_1.8.4 R6_2.4.0

## [76] generics_0.0.2 DBI_1.0.0 pillar_1.3.1

## [79] haven_2.1.0 foreign_0.8-71 withr_2.1.2

## [82] mgcv_1.8-28 RCurl_1.95-4.12 nnet_7.3-12

## [85] modelr_0.1.4 crayon_1.3.4 rARPACK_0.11-0

## [88] ellipse_0.4.1 rmarkdown_1.12 locfit_1.5-9.1
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