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ABSTRACT
Approximately 5% of individuals infected with hepatitis 
B virus (HBV) are coinfected with hepatitis D virus (HDV). 
Chronic HBV/HDV coinfection is associated with an 
unfavourable outcome, with many patients developing 
liver cirrhosis, liver failure and eventually hepatocellular 
carcinoma within 5–10 years. The identification of the 
HBV/HDV receptor and the development of novel in vitro 
and animal infection models allowed a more detailed 
study of the HDV life cycle in recent years, facilitating 
the development of specific antiviral drugs. The 
characterisation of HDV-specific CD4+ and CD8+T cell 
epitopes in untreated and treated patients also permitted 
a more precise understanding of HDV immunobiology 
and possibly paves the way for immunotherapeutic 
strategies to support upcoming specific therapies 
targeting viral or host factors. Pegylated interferon-α has 
been used for treating HDV patients for the last 30 years 
with only limited sustained responses. Here we describe 
novel treatment options with regard to their mode of 
action and their clinical effectiveness. Of those, the 
entry-inhibitor bulevirtide (formerly known as myrcludex 
B) received conditional marketing authorisation in 
the European Union (EU) in 2020 (Hepcludex). One 
additional drug, the prenylation inhibitor lonafarnib, is 
currently under investigation in phase III clinical trials. 
Other treatment strategies aim at targeting hepatitis 
B surface antigen, including the nucleic acid polymer 
REP2139Ca. These recent advances in HDV virology, 
immunology and treatment are important steps to make 
HDV a less difficult-to-treat virus and will be discussed.

INTRODUCTION
The human hepatitis D virus (HDV) is unique 
among animal viruses. Enveloped in the hepatitis B 
virus (HBV) surface proteins, HDV constitutes the 
smallest human virus with a diameter of 35–36 nm 
(figure 1A). HDV requires HBV as a helper for entry 
into hepatocyte, intrahepatic spread and dissemina-
tion between its hosts.1 2 Although recent in vitro 
findings indicate that HDV may propagate indepen-
dent from HBV, using envelope glycoproteins from 
several virus genera such as vesiculovirus, flavivirus 
and hepacivirus including hepatitis C virus (HCV),3 
clinical investigations confirm its strong association 
with HBV infection (hepatitis B surface antigen, 
HBsAg positivity).4–6 Some estimates suggest that 
up to 60 million individuals may be infected with 
HDV,7 8 however, another meta-analysis indicates 
that 12 million people are affected.9 HBV/HDV 
coinfection is associated with a more severe course 

of the diseases and an increased mortality compared 
with HBV monoinfection. Simultaneous infection 
with HBV and HDV of adults results in clearance 

Key messages

►► At least 12 million individuals infected with 
hepatitis B virus (HBV) are coinfected with 
hepatitis D virus (HDV) and have a high risk 
to develop liver cirrhosis and hepatocellular 
carcinoma within a few years.

►► Until 2020, there was no specific treatment 
option for the large majority of these patients; 
off-label use of pegylated interferon-α 
(pegIFNα) displays only approx. twenty per 
cent off-therapy virological response rates and 
is contraindicated in many patients.

►► The identification of sodium taurocholate 
cotransporting polypeptide (NTCP) as cell 
entry receptor for both, HBV and HDV, allows 
the development of novel cell culture models 
and contributes to the development of novel 
treatment strategies.

►► Beside de novo entry of virions via NTCP, cell 
division is an important mechanism of HDV 
spread; thus, combination therapies targeting 
these different mechanisms of viral spread are 
expected to show synergistic effects.

►► Characterisation of HDV-specific immune 
responses will contribute to a better 
understanding of the mechanisms of HDV 
clearance versus persistence. It may also 
lead the way to novel treatment concepts, 
combining compounds that target host and/
or viral targets and immunotherapeutic 
interventions.

►► Three novel anti-HDV compounds target host 
factors: the entry inhibitor bulevirtide (BLV, 
Hepcludex), the prenylation inhibitor lonafarnib 
(LNF), and the nucleic acid polymer REP2139Ca.

►► BLV was approved for conditional marketing in 
Europe in 2020. BLV in combination with (off-
label) pegIFNα for 48 weeks or as monotherapy 
for a longer duration may allow sustained 
virological responses in a substantial proportion 
of patients.

►► LNF and REP2139Ca also display encouraging 
response rates but additional data from phase 
III trials (ongoing for LNF) will be required prior 
to final assessment and possible approval by 
regulatory authorities.
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of both viruses in the majority of individuals. In contrast, super-
infection of an HBV-infected patient with HDV typically results 
in the development of persistent HBV/HDV coinfection which 
may lead to liver cirrhosis, liver failure and eventually hepatocel-
lular carcinoma (HCC) within short time. Indeed, 50%–70% of 
patients with chronic HBV/HDV coinfection develop cirrhosis 
within 5–10 years after diagnosis, corresponding to a threefold 
increase compared with HBV-monoinfected patients.10 The risk 
for HCC development is increased compared with HBV monoin-
fection with an odds ratio (OR) of 1.28–2.77, depending on the 
selection of studies included in the meta-analysis.11 Due to this 
increased complication rate, HDV coinfected patients account 
for approx. 25% of HBsAg-positive liver transplant recipients 
in the European Liver Transplant Registry.10 Until recently, no 
approved antiviral treatment was available against HDV, thus, 
a more precise understanding of HDV virology and anti-HDV 
immune responses is essential to develop and establish novel 
therapeutic regimens.

HDV STRUCTURE, REPLICATION, MECHANISMS OF 
PERSISTENCE AND ANTIVIRAL TARGETS
Molecular biology and the burden of HDV infection
HDV genotypes and endemic hotspots
Due to the sequence variations found in HDV isolates, eight 
clades, termed genotypes 1–8, have been classified.12 They show 
remarkable differences in their replication efficacies.13 Geno-
type 1 is globally scattered while HDV genotypes 2–8 can be 
attributed to distinct geographic regions in the world. While 
the HDV median prevalence in HBsAg carriers is estimated to 
about 5%, it typically manifests in hotspots10 like Mongolia, the 
Middle East, Usbekistan or parts of South America where up 
to 80% of HBsAg carriers also display markers (anti-HDV anti-
bodies, HDV RNA) of an HDV infection.10 Due to the large gaps 
of knowledge on reliable epidemiological data HDV prevalence 
may be profoundly underestimated and needs more attention in 
the future.7

Figure 1  Structures of HDV virion and genome. (A) Schematic representation of HDV virion (left) and envelope proteins (right). HDV virion has a 
ribonucleoprotein (RNP) complex inside and an HBV derived envelope outside. The RNP consists of the HDV genome and two isoforms of hepatitis 
D antigen (HDAg), L-HDAg and S-HDAg. Prenylation of L-HDAg is essential for envelope acquisition. The envelope contains three HBV envelope 
proteins: small-HBsAg (S-HBsAg), medium-HBsAg (M-HBsAg) and large-HBsAg (L-HBsAg). M and L share the same sequence with S, however, contain 
N-terminal extensions: preS2 for M and preS1 plus preS2 for L. The preS1 domain of L is critical for binding of the receptor sodium taurocholate 
cotransporting polypeptide (NTCP), while the cytosolic loops (CLs) are important for encapsulation of HDV RNP through interaction with HDAg. (B) 
HDV genome structure and key elements. As a single-strand circular RNA, HDV genome forms an unbranched rod-like structure through high rate of 
intramolecular base-pairing. A representative region consisting of short stems and bulges is depicted on top. S-HDAg and L-HDAg are encoded by 
unedited and adenosine deaminases acting on RNA 1 (ADAR1)-edited (Amber stop codon to TGG (W)) genomic RNAs, respectively. The C terminal 
prenylation motif (CXXQ) is indicated. The numbering of nucleotide and protein sequences is based on a HDV genotype one strain (GenBank: 
M21012.1). HBsAg, hepatitis B surface antigen; HBV, hepatitis B virus; HDV, hepatitis D virus; L-HDAg, large HDAg; S-HDAg, small HDAg.
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HDV genome structure
The HDV genome consist of 1672–1697 ribonucleotides 
(genotype-dependent) and forms a single stranded covalently 
closed circular RNA molecule of negative polarity (defined 
in relation to the (+) stranded mRNA encoding the hepatitis 
D antigen (HDAg)). Both, genomic and antigenomic RNA is 
characterised by a high degree of self-complementarity (>70%) 
leading to recurrent back-folded stretches of base paired rods, 
that are interrupted by short loops.14 This peculiar structure 
resembles the structure of plant viroid RNA and mimics a DNA 
double helix (figure  1B). Different from plant viroids, HDV 
RNA associates with the viral HDAg but also the protein bromo-
domain adjacent to zinc finger domain 2B (BAZ2B), involved in 
chromatin remodelling.15 Such ‘molecular mimicry’ complexes 
of dsDNA enables the host DNA-dependent RNA-polymerase 
(Pol II) to accomplish RNA-dependent RNA synthesis. HDAg is 
encoded as two isoforms within a segment of the HDV genome, 
namely the small HDAg (S-HDAg, 195 aa, 24 kDa) and the large 
HDAg (L-HDAg, 214 aa, 27 kDa). While S-HDAg is necessary to 
initiate and maintain replication, L-HDAg negatively regulates 
replication and triggers envelopment of the virus into the HBV 
surface proteins. Both antigens are post-translationally modified 
in order to fulfil their distinct functions.1 2

HDV replication and envelopment of HDV ribonucleoproteins into 
HBsAg
Following entry and delivery of the genomic HDV ribonucle-
oprotein complex (RNP) to the nucleus of an infected hepato-
cyte, S-HDAg-encoding mRNA is transcribed and translated. 
S-HDAg expression is required for maintenance of nuclear 
RNA replication functioning as a ‘reprogramming factor’ 
to adopt Pol-II to an RNA substrate. During RNA synthesis, 
which proceeds via consecutive rolling circle mechanisms that 
switch between (−) and (+) strand synthesis (see reference 2 
and figure 2A), the de novo synthesised genomic HDV RNA 
underlies editing by the cellular ADAR-1 enzyme.16 This editing 
results in a mutation in the UAG stop codon of the S-HDAg 
open reading frame to a UGG (Trp-codon). After transcription 
of the corresponding HDAg-mRNA, the ribosome introduces a 
Trp residue and further on a C-terminal extension of 19–20 aa 
(genotype dependent) leading to L-HDAg. Accordingly, both 
HDAgs share the N-terminal S-HDAg domain and are able 
to bind genomic and antigenomic HDV RNA to form RNPs 
(figure 1). In addition, L-HDAg is subjected to prenylation by 
the cellular farnesyltransferase (target of lonafarnib (LNF)) at a 
conserved Cys-residue (Cys-211) within the C-terminal exten-
sion. When HBsAg is expressed in the same cell, prenylated 
L-HDAg recognises a hydrophobic element within the cyto-
solic loop of the small HBV envelope protein (S-HBsAg). 
Since S-HBsAg alone triggers self-assembly and secretion of 
HBV subviral particles (SVPs), expression of HBsAg in RNP 
containing cells is sufficient for HDV secretion. Through 
incorporation of the large HBV envelope protein L-HBsAg, the 
particles gain infectivity and support transmission into sodium 
taurocholate cotransporting polypeptide (NTCP)-receptor 
expressing cells to disseminate within the liver (figure 2A) and 
between hosts17 (for more details see reference 1 2). The HBV 
M-protein is redundant for both, particle release and entry.18 19 
Since in a natural infection HBsAg can be expressed from both 
HBV cccDNA (in HBV replicating cells) and chromosomally 
integrated HBV DNA,20 21 enveloped HDV serum RNA parti-
cles may arise from both sources.

Receptor interaction and the consequence of HBV integration
Liver tropism and hepatic receptors of HBV and HDV
The liver tropism of HBV and HDV is primarily determined by 
a specific interaction of an extended receptor binding domain 
(RBD) (aa 1–75) in the preS-1-part of the HBV L-protein18 and 
the hepatic NTCP receptor.22 23 NTCP interaction of HBV and 
HDV requires prior attachment to heparan sulphate proteogly-
cans (HSPGs)1 (figure 2A). This mandatory step presumably trig-
gers the release of the otherwise hidden preS-receptor binding 
site. HSPG-requirement explains how neutralising anti-HBsAg-
specific antibodies, although they do not directly interfere with 
preS/NTCP-interaction, block entry and control infection.

NTCP exclusively locates at the basolateral/sinusoidal 
membrane of differentiated, polarised hepatocytes. NTCP-
expression ceases when differentiated hepatocytes proliferate.24 
NTCP is also downregulated in transformed cell lines of hepatic 
origin such as HepG2, HuH7 and Hep3B. Thus, proliferating 
normal hepatocytes, transformed hepatoma cells, and probably 
also tumour cells in HCC lack NTCP25 and do not support entry 
of HBV and HDV. Though, proliferating cells support spread 
of HDV RNA (depending on their interferon (IFN) activated 
state)26 27 but loose HBV cccDNA (figure 2B).28 A deeper under-
standing of these peculiar differences of HDV and its helper HBV 
will be crucial for understanding persistence and is important for 
the development of successful therapeutic interventions.

Studying HDV replication in vitro
Constitutive NTCP expression provides susceptibility to HDV 
infection of hepatic and even non-hepatic cells. Different NTCP-
expressing cell lines have been developed in recent years and 
are used as HDV/HBV infection systems to study fundamental 
aspects of virus replication but also for the identification of 
novel drug candidates. Although NTCP-expression is sufficient 
to permit HDV entry and the onset of replication, assembly and 
secretion of viral particles cannot be achieved due to the lack of 
the HBV envelope proteins required for virus release. This can 
be overcome by cell lines that express both, the NTCP receptor 
and the HBV envelope proteins.29 30 Such cell lines support the 
complete replication cycle of HDV with entry, initiation of RNA 
replication, processing of L-HDAg and release of infectious 
progeny virus. Remarkably, coexpression of NTCP and its ligand 
(the L-protein) neither interferes with HDV particle secretion 
nor does it induce receptor downmodulation as described for 
many viruses (eg, HIV31 or even the duck HBV32). This has 
important clinical implications on intrahepatic persistence of 
HDV RNA and the envisaged results of treatment responses. 
Different in vivo models for HDV have been developed and are 
summarised in.33

Consequences of HBV integration and clonal expansion of 
integrants
One implication of HBV integration is that the replication space 
of HDV in an HBV-infected liver may not be restricted to cells 
that transcribe HBsAg from HBV cccDNA but also to hepato-
cytes that express HBsAg from integrated HBV DNA. Such 
integrates establish instantly when double stranded linear HBV 
DNA-containing particles, a ‘by-product’ of HBV replication, 
enter hepatocytes via NTCP.34 Early during acute HBV infection, 
the integration rate is low and restricted to single cells, however 
under circumstances like continuous inflammation accompa-
nied by liver regeneration, or transformation, such cells clonally 
expand. Although integrated HBV DNA cannot function as a 
‘provirus’ (like retroviruses), it characteristically encodes HBV 
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envelope proteins which, when located in transcriptionally 
active sites of the chromosome and contribute to serum HBsAg 
in patients. If such clonally expanded ‘hepatocyte islands’ 
carrying identical integrations maintain NTCP expression, they 
constitute HBV cccDNA-independent replication space for HDV 
in the liver. Considering that cccDNA gets lost during cell divi-
sion,28 35 it is reasonable to assume that especially in HBeAg-
negative chronic carriers of HBV, who have been shown to 
produce the majority of HBsAg from integrates,36 HDV serum 

RNA may significantly originate from cells with HBV integrates. 
Thus, therapeutic approaches targeting cccDNA would only 
partially affect HDV.

Cell division mediated intrahepatic spread of HDV RNA
Besides spreading of enveloped HDV via an NTCP-receptor 
dependent de novo infection pathway, another mode of 
HDV RNA dissemination has been described recently.26 It is 

Figure 2  HDV life cycle, spreading pathways and drug targets. HDV virions first attach to heparan sulfate proteoglycans (HSPGs) and then to the 
viral receptor NTCP to enter host cells. After membrane fusion, the ribonucleoprotein (RNP) is released and further transported to the nucleus to 
initiate RNA replication. The incoming genome (G) serves as the template for the first rolling circle amplification. The resulting antigenome (AG) 
multimers are cleaved in cis by the intrinsic ribozyme and ligated into circular monomers. After a second rolling cycle using the AG as the template, 
HDV G multimers are synthesised and further cleaved to produce monomers. The HDV AG might be edited by ADAR1, yielding an extended HDAg ORF 
that produces L-HDAg, some of that is further prenylated. S-HDAg and L-HDAg (intact and prenylated) are transported into the nucleus to regulate 
virus replication or bind to the HDV RNA to form RNP. The G-containing RNP can be exported to the cytoplasm and encapsulated into HBV envelope 
through the interaction between L-HDAg and S-HBsAg. HDV virions are released through the ER-Golgi secretory pathway. besides the HBV envelope-
dependent de novo infection, HDV can also spread through division of infected cells in an HBV-independent manner (below). Bulevirtide (BLV) blocks 
de novo infection by efficient binding of the viral receptor NTCP. Lonafarnib (LNF) prevents the prenylation of L-HDAg by inhibiting the farnesyl 
transferase and consequently impairs HDV assembly and secretion. The target(s) of nucleic acid polymer (NAP) is unclear. It may inhibit assembly/
release of HDV virions and/or HDV ribonucleoprotein assembly via direct interaction with the HDAg. IFNs, including MDA5-mediated HDV-induced 
IFNs and therapeutic IFNα and IFNλ, induce IFN stimulated genes (ISGs) which profoundly suppress HDV amplification during cell division. HBV, 
hepatitis B virus; HDV, hepatitis D virus; IFN, interferon; L-HDAg, large hepatitis D antigen; NTCP, sodium taurocholate cotransporting polypeptide; 
S-HBsAg, small hepatitis B surface antigen.
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characterised by the direct transfer of replication competent 
HDV RNA between cells during mitosis. This process can 
proceed in the absence of HBsAg. To what extent it contributes 
to HDV persistence in the liver of infected patients is unknown 
and needs to be investigated in the future. The effectiveness of 
cell division-mediated RNA spread however profoundly depends 
on recognition of replicating HDV RNA by MDA537 and the 
degree of IFN induction (figure 2B).

Interfering with viral replication
Viral targets
In contrast to other RNA viruses that encode RNA-dependent 
RNA-polymerases (RdRP) for replication and mRNA synthesis, 
HDV recruits and reprogrammes the cellular Pol II to achieve 
these goals.2 Accordingly, an important viral drug target (the 
RdRP) is lacking. Nevertheless, crucial steps in the viral life 
cycle like the ribozyme-mediated self-cleavage of genomic and 
antigenomic RNA oligomers or the HDAg-dependent regu-
lation of RNA replication and mRNA synthesis are attractive 
viral structures suitable for drug targeting. Inactivation of the 
S-HDAg could induce a selective shut down of RNA synthesis 
(eg, through abrogation of its RNA binding activity or inacti-
vation of its cofactor function for Pol II). Alternatively, aboli-
tion of the interaction of the prenylated C-terminus of L-HDAg 
with the cytosolic loop in the HBV S-domain by small mole-
cules would inhibit virus release similar to LNF, which targets 
the corresponding host enzyme (see below and figure 2A). No 
such drugs have been identified so far, however applying the new 
replication systems mentioned above will facilitate screening 
approaches and drug candidate identification in the future.

Cellular targets
At present all strategies that have been clinically developed 
address cellular targets. Host factor targeting bears the problem 
that the drug inactivates the cellular function of the target 
and thus, besides affecting the virus, also induces side effects. 
Conversely, host factor targeting profits by a higher barrier 
to develop drug resistance. The most advanced drug against 
HDV is bulevirtide (BLV), formerly called Myrcludex B. BLV 
addresses NTCP thereby blocking virus entry.17 Another drug, 
LNF, inactivates farnesyltransferase, thereby preventing envel-
opment of RNPs with HBsAg (figure 2A).38 While interference 
with prenylation results in a direct inhibition of virion release 
on target engagement, entry inhibition affects serum HDV-RNA 
levels through an indirect effect, namely the reduction of the 
pool of HDV producing cells by cell turnover through sustained 
inhibition of de novo infection. According to these differences 
in their mode of action, the kinetics and the degree of drug-
mediated suppression of HDV serum RNA levels differ substan-
tially. The third drug that is presently developed clinically are 
nucleic acid polymers (NAPs). These molecules have been asso-
ciated with multiple modes of action including HBsAg secretion 
inhibition of SVPs and virions by targeting (a) host factor(s) 
and direct interaction with HDAg.39 40 In addition, it has been 
assumed that NAPs impact immunological mechanisms by yet 
ill understood mechanisms.41 Lastly, IFN-α (IFNα), an off-label 
drug used for chronic HBV/HDV coinfection since the 1980s, 
inhibits HDV replication, likely through induction of antiviral 
interferon stimulated genes (ISGs) and/or adaptive immunity 
(figure  2B). Notably, IFNs (IFNα and IFNλ) can profoundly 
suppress cell division-mediated HDV spread, which is not 
achievable by entry or release inhibition.27

Beside these well-characterised host factors additional 
approaches using siRNA or drug libraries42 in susceptible cell 
lines will allow to identify novel host factors in the future and it 
will be a challenging task to identify those that allow interven-
tion and are tolerable regarding side effects.

IMMUNE RESPONSE TO HDV
Innate immunity
Interferon
IFNs are the main mediators of early containment of viral repli-
cation: They bridge the gap until adaptive immunity is induced 
and play a crucial role in this induction process. While HBV as 
a ‘stealth’ virus undermines the IFN system by avoiding recog-
nition in acute as well as chronic infection,43–45 HDV resem-
bles HCV46 and induces an IFN response, but may have several 
methods to counteract or even take advantage of it. Indeed, 
induction of an IFN response has been demonstrated in cell 
culture models as well as in a mouse model of acute and chronic 
coinfection.37 47–49 Induction is limited to IFNβ and λ, but not α, 
and compared with other RNA viruses (eg, Sendai virus) rather 
weak.37 Recognition of RNA intermediates is sensed by the 
pattern recognition receptor melanoma differentiation antigen 
5 (MDA5) (figure  2B), but not retinoic acid inducible gene I 
(RIG-I) or toll-like receptor 3 (TLR3).37 Since MDA5 is pref-
erentially localised in the cytoplasm, the exact mechanisms of 
HDV sensing is not yet clear. The suppressive effect of IFNα on 
HDV replication in vitro is more profound during an early stage 
of infection (eg, the establishment of replicative intermediates) in 
vitro, while established infections in the absence of cell division 
are less affected.37 50 Importantly, IFN has a dominant effect on 
cell-division mediated HDV spread.27 This sensitivity of HDV to 
IFN during cell division is not yet understood on the molecular 
level but may be due to the resolution of the nuclei, exposure 
of viral RNA to induced ISGs, and the subsequent elimination/
degradation of HDV RNA. Of note, this finding has implications 
for future combination therapies with innate immune modula-
tors (eg, TLR agonists) but also IFN (eg, IFNλ).

HDV-induced IFNs may suppress HBV replication, partially 
explaining that patients coinfected with HDV usually display 
low HBV viral loads.47 In addition, HDV may take advantage of 
the IFN response: it leads to IFNβ/λ-mediated upregulation of 
HBV antigen presentation, resulting in increased T-cell induced 
HBV suppression and thus a further shift towards a dominance 
of HDV over HBV replication.51 How HDV counteracts the IFN 
response is so far only partially understood. There are conflicting 
results regarding the down-regulation of ISG transcription by 
HDV-mediated inhibition of phosphorylation and nuclear trans-
location of STAT1/2.37 48 52 Alternatively, HDV may hide from 
recognition as well as clearance by the IFN system by compart-
mentalisation to the nucleus as well as protecting its RNA within 
the RNP as well as HBsAg.49

Natural killer cells
Natural killer (NK) cells are increased in frequency in the periph-
eral blood in chronic viral hepatitis, irrespective of the exact 
viral pathogen, however, they display a less activated phenotype 
and are compromised in cytolytic function and cytokine produc-
tion. Untreated HBV/HDV coinfected patients tend to have even 
higher peripheral NK cell frequencies compared with patients 
with other hepatitis virus infections, however, this difference is 
most likely due to the impact of disease activity and severity on 
NK cell frequency and function rather than the viral pathogen 
itself.53 These data also suggest, but do not proof, a role of NK 
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cells in pathogenesis and disease progression. Of note, cyto-
megalovirus (CMV)-associated adaptive-like NK cell subsets are 
not affected by HDV or other hepatitis viruses.54 Early studies 
indicated a boost of NK cell activity during therapy in HBV/
HDV coinfected patients that responded to IFNα treatment 
(clearance of intrahepatic delta antigen).55 More recent analysis 
demonstrated a change in NK cell differentiation during IFNα 
treatment, with selective loss of terminally differentiated NK 
cells, enrichment in immature NK cell subsets, and functional 
impairment.56 A high percentage of CD56dim NK cells at baseline 
was positively associated with treatment response,56 suggesting 
an important role of NK cells in IFN-induced viral control.

Mucosa-associated invariant T cells
Mucosa-associated invariant T (MAIT) cells occur in high 
frequencies in the liver.57 In patients with HBV/HDV coinfec-
tion, MAIT cells are activated, most likely due to increased 
interleukin 12 (IL-12) and IL-18 secretion by activated mono-
cytes, leading to functional impairment and subsequent progres-
sive loss of peripheral as well as intrahepatic MAIT cells with 
progressive disease.58

Adaptive immune response
Antibody response
Anti-HDV antibodies are detectable in rather low titres in 
acute-resolving HDV infection, but at higher titres in persistent 

infection.59 In patients with active hepatitis, anti-HDV IgM 
often persist at high titres. Thus, anti-HDV antibodies contribute 
little to viral control and clearance, most likely due to the lack of 
neutralising activity.

T cell response
Virus-specific T cells are the drivers of elimination in acute-
resolving HBV as well as HCV infection. The important contri-
bution of cellular adaptive immunity in HBV and HCV clearance 
have been demonstrated by (1) longitudinal studies demon-
strating temporal association between the onset of virus-specific 
T-cell responses and viral elimination, (2) HLA association 
studies revealing protective class I and II alleles, and (3) direct 
antibody-mediated depletion of CD4+ and CD8+ T cells in the 
chimpanzee model.60 For HBV/HDV coinfection, the role of T 
cells has not been well defined, since adequate animal models are 
lacking and few HDV-specific T cell epitopes with defined HLA 
restriction were fine-mapped so far.

Indeed, the HDV-specific CD4+ T cell epitope repertoire 
has been analysed in two studies at a single-epitope resolu-
tion.61 62 Approx. 30%–40% of untreated HDV-infected patients 
displayed HDV-specific CD4+ T cell responses usually targeting 
1–3 distinct epitopes. These responses were weak and only 
detectable after antigen-specific culture. CD4+ T cells targeted 
epitopes throughout the L-HDAg, with some preference for the 
N-terminal region (figure 3). In addition, CD4+ T cell epitopes 

Figure 3  HDV regions targeted by HDV-specific CD4+ and CD8+ T cell epitopes. (A) Dominantly targeted CD8+ and CD4+ epitope regions (identified 
in olp studies) are indicated in blue and green colour, respectively, with intensity representing frequency of recognition. Fine-mapped CD8+ and CD4+ 
T cell epitopes are indicated by blue and green bars, respectively. HLA class I associated HDV polymorphisms (‘HLA footprints’) that correlate to 
fine-mapped epitopes are depicted by red arrowheads. (B) HLA restriction of fine-mapped HDV-specific CD8+ T cell epitopes, demonstrating a clear 
dominance of HLA-B restriction. HDV, hepatitis D virus; L-HDAg, large hepatitis D antigen; S-HDAg, small HDAg.
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displayed promiscuous HLA restriction. The two studies led 
to conflicting results regarding the association between detect-
able HDV-specific CD4+ T cell responses and clinical parame-
ters. Nisini et al were able to detect HDV-specific CD4+ T cell 
responses only in patients with normal alanine aminotransferase 
(ALT; HDV-RNA data are not available for this early study).62 
Landahl et al, in contrast, did not observe an association between 
HDV-specific CD4+ T cell responses and HDV-RNA status (18 
untreated patients with detectable RNA vs 13 untreated patients 
with undetectable RNA), HDV viral load, transaminases or 
HBsAg levels. They found, however, an association between 
HDV-specific CD4+ T cell responses and low HBV viral load,61 
paralleling the association between HBV-specific T-cell responses 
and low HBV viral load found in inactive HBsAg carriers and 
nucleoside/nucleotide analogue-treated patients in chronic HBV 
monoinfection.63

HDV-specific CD8+ T cell responses were comprehensively 
analysed only recently.61 64 65 Indeed, after peptide-specific 
culture using overlapping L-HDAg peptides, approx. 40% and 
70% of untreated and LNF-treated patients, respectively, with 
chronic HBV/HDV coinfection displayed HDV-specific CD8+ 
T cell responses.61 65 HDV-specific CD8+ T cell epitopes clus-
tered in the C-terminal part of HDAg that is unique to its 
large isoform (L-HDAg) and were dominantly restricted by 
HLA-B alleles61 65 (figure 3). Like HDV-specific CD4+ T cells, 
HDV-specific CD8+ T cells display low ex vivo frequencies 
similar to HBV- and HCV-specific CD8+ T cell frequencies, 
but substantially lower compared with Eppstein Barr Virus 
(EBV) -specific, CMV-specific and influenza-specific CD8+ T 
cells.64 65 Earlier studies in a small number of patients found 
positive HDV-specific CD8+ T cell responses in patients with 
resolved HDV infection only.66 67 In the more recent and 
comprehensive analyses, however, no difference was observed 
for the detection rate of proliferative HDV-specific CD8+ 
T cell responses between patients with resolved HDV infec-
tion and patients with chronic HBV/HDV coinfection.61 64 65 In 
comparison to previous findings in HBV and HCV infection, 

where patients with spontaneously resolved infection usually 
display substantially stronger T-cell responses on peptide stim-
ulation, this finding is unexpected. It may be explained by the 
fact that many patients with resolved HDV infection are still 
chronically infected with HBV, leading to continued T-cell 
exhaustion, or long periods of HDV viraemia in many patients 
possibly leaving a functional scar (eg, partial exhaustion) on 
HDV-specific CD8+ T cells even after viral clearance similar 
to the findings in HCV-infected patients after DAA-mediated 
cure.68 In line with these considerations, IFNγ responsiveness 
of HDV-specific CD8+ T cells correlated negatively with HDV 
viral load in untreated patients in one study,65 but with HBV 
viral load in the other study.61

The mechanisms of HDV-specific CD8+ T cell failure 
in chronic HBV/HDV coinfection have been addressed 
recently.64 65 67 69 There is evidence that the two main mecha-
nisms known for other viral infections also apply to HDV: 
mutational viral escape and CD8+ T cell exhaustion (figure 4). 
A large international collaborative study analysed HLA class 
I-associated viral sequence polymorphisms in 104 untreated 
patients with chronic HBV/HDV coinfection. Several HDV-
specific CD8+ T cell epitopes were identified and viral sequence 
variations in these epitopes were confirmed to mediate viral 
escape by functional analyses.64 67 Of note, several of the newly 
identified HDV-specific CD8+ T cell epitopes corresponded to 
HDV-specific CD8+ T cell epitopes identified by using over-
lapping peptides (figure 3),61 65 indicating that the repertoire of 
HDV-specific CD8+ T cell epitopes is limited. Importantly, both 
approaches and all three studies consistently observed a domi-
nance of HLA-B alleles in restricting HDV-specific CD8+ T cell 
responses.61 64 65 Strikingly, the majority of CD8+ T cell epitopes 
as well as HLA-associated sequence polymorphisms was linked 
to quite rare HLA class I alleles, while most common HLA class 
I alleles such as HLA-A*02 seem to contribute little to the HDV-
specific CD8+ T cell epitope repertoire.64 Thus, viral escape may 
have led to the extinction of HDV-specific CD8+ T cell epitopes 
restricted by common HLA class I alleles at the population level.

Figure 4  Mechanisms of HDV-specific CD8+ T cell failure. HDV-specific CD8+ T cells targeting viral epitopes with wild-type sequence display a 
chronically activated phenotype and are functionally partially exhausted (left), HDV-specific CD8+ T cells targeting viral epitopes with sequence 
variations (viral escape) do not recognise the antigen anymore and display a memory-like phenotype (right). HDV, hepatitis D virus.
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HDV-specific CD8+ T cells targeting viral epitopes with 
mutated sequences displayed a memory-like phenotype 
(CD127+, programmed cell death protein 1 [=(PD-1)+, T cell 
factor 1 (TCF-1)+) and low expression of activation markers 
such as CD38,64 65 consistent with the phenotype of virus-
specific CD8+ T cells lacking antigen stimulation due to viral 
escape in chronic HCV infection.70 HDV-specific CD8+ T cells 
that targeted viral epitopes without evidence of viral escape, 
however, displayed a different phenotype with higher expres-
sion of CD38 and lower expression of CD127 and TCF-1.65 
These cells were, however, not terminally exhausted, since they 
displayed low levels of CD57 and—mostly strikingly—expressed 
multiple inhibitory/exhaustion markers to a lesser degree 
compared with HBV-specific, CMV-specific and EBV-specific 
CD8+ T cells.65 While it is at first contraintuitive that virus-
specific CD8+ T cells in the setting of the ‘most severe’ viral 
hepatitis display lower exhaustion markers compared with other 
persistent viral infections, this observation may partially explain 
the similar strength of HDV-specific CD8+ T cell responses in 
resolved versus chronic infection. It is also in agreement with 
the previous report that HDV-specific T cells are functionally 
restored by the third signal cytokine IL-12 rather than by check-
point inhibitors such as anti-PD-L1 or anti-CTLA4.69 CD38+ 
HDV-specific CD8+ T cells, and thus HDV-specific CD8+ T cell 
targeting non-mutated HDV epitopes, were associated with 
increased aspartate aminotransferase (AST) levels, indicating, 
but by far not proving, a causative role of HDV-specific CD8+ 
T cells in immunopathology of chronic HBV/HDV coinfection.65

Some of the most important questions in HDV-specific immu-
nity remain to be solved. For example, regarding the natural 
course of persistent infection, the precise mechanism of immu-
nopathology leading to unfavourable outcomes in the majority 
of patients remains elusive. From an immunologist’s perspective, 
the interplay between HBV-specific and HDV-specific immunity 
is a clear focus for further investigation, especially since current 
studies still ‘ignore’ the dual role of HBsAg as surface antigen of 
both, HBV as well as HDV. Lastly, and most important from a 
translational perspective: Are HDV-specific immune responses 
(at least partially) restored during therapy with novel antiviral 
strategies, similar as observed for HBV during NUC treatment 
and HCV during DAA therapy60? HDV-specific T-cell responses 
show little recovery during the treatment with pegylated IFNα 
(similar to what has been observed for HBV- and HCV-specific 
T-cell responses, likely due to the T-cell-suppressive effects of 
IFNα), but do they restore and play a role in viral clearance 
during BLV therapy? First analyses that were limited to three 
cases with cirrhosis could not readily identify such a T-cell resto-
ration,71 however, further studies need to address this in larger 
patient cohorts also including less advanced disease. Of note, 
restoration of HDV-specific immunity by new antiviral treat-
ments targeting host and/or viral targets may also pave the way 
for therapeutic vaccination that may be an attractive interven-
tion in the setting of an otherwise ‘suppressive’ and not ‘cura-
tive’ treatment strategy.

ANTI-HEPATITIS D TREATMENT
Endpoints of therapy
The ideal endpoint for any anti-HDV therapy would be HBsAg 
loss with anti-HBs seroconversion. Elimination of replicating 
HDV RNA from the liver in HBsAg positive patients would be an 
alternative, however, it would require biopsies from patients and 
is not applicable in clinical practice. A more practical primary 
endpoint outcome is serum or plasma HDV RNA (as a surrogate 

marker of liver HDV-RNA levels) below the limit of detection by 
a sensitive and specific PCR assay during therapy, at the end of 
treatment (EOT) and off-therapy, at least 24 weeks after treat-
ment discontinuation.72 However, given the high risk of late 
post-treatment virological relapses described after IFN–based 
therapies, a sustained off-therapy response should be confirmed 
over time, well beyond 24 weeks after treatment discontinua-
tion. The proportion of patients with a≥2 log IU/ml decline of 
HDV RNA coupled with normal ALT have also recently been 
suggested as reasonable secondary endpoints for clinical trials.73 
To comply with these stringent virological endpoints, it is of 
paramount importance to rely on commercially available, vali-
dated, WHO standardised, sensitive and specific HDV RNA 
assays that may allow to compare viral kinetics within as well as 
across studies.73

Current anti-HDV treatment
IFNα
Although not FDA or EMA approved, standard and pegIFNα 
treatments have been widely used as anti-HDV strategy in 
the last 20–30 years. PegIFNα is the only treatment regimen 
currently recommend by international guidelines.74–76 A 
48-week course of weekly subcutaneous injections of pegIFNα 
suppresses HDV replication in approximately 20%–30% of the 
patients 24 weeks off therapy, yet with significant side effects. 
Continuous administration of IFN for more than 48 weeks may 
lead to a lower likelihood of disease progression, with HBsAg 
loss occurring in about 10% of these patients during long-term 
follow-up.77 Although the long term, off-treatment virological/
biochemical response induced by IFN treatment has been asso-
ciated with improved outcomes,72 73 IFN has limited use in clin-
ical practice given the fact that this drug is contraindicated in 
elderly people or in those with autoimmune disease stigmata or 
with advanced or decompensated liver disease. Moreover, many 
patients have been already unsuccessfully exposed to standard or 
pegIFNα in the past. Combination of pegIFNα-2a with adefovir 
for 48 weeks78 or with tenofovir disoproxil fumarate (TDF) for 
96 weeks did not significantly improve the off-treatment viro-
logical responses.79 Of note, in approximately 50% of week 
24 off-treatment responders, a late virological relapse was 
observed, further challenging the long-term effectiveness of this 
treatment.80

The general failure of IFN treatment to induce a long-term 
(>24 weeks) sustained virological response on HDV may be due 
to the persistence of HDV in the liver even at very low HBsAg 
levels. This concept is supported by the observation that after 
liver transplantation, HDV can persist in the liver for many 
months even in the absence of liver HBV DNA/cccDNA and 
serum HBsAg and HDV RNA.81

New anti-HDV strategies: completed phase II studies
NAPs with pegIFNα
Phosphorothioate NAPs are oligonucleotides with a broad spec-
trum of inhibitory activity against several viruses, whose exact 
mechanism in HDV is still unknown (see previous section on 
virology).

In the non-randomised, open-label phase 2 REP301 study, 12 
treatment-naïve non-cirrhotic patients with chronic HBV/HDV 
coinfection from Moldova received 500 mg of REP2139Ca 
intravenously once per week for 15 weeks, followed by 15 weeks 
of 250 mg REP2139Ca+pegIFNα, then followed by 33 weeks 
of pegIFNα monotherapy (overall 63 weeks of therapy).82 At 
24-week off-treatment follow-up, 5 (42%) patients were HBsAg 
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negative, 5 (42%) anti-HBs positive, 7 (58%) with HBV DNA 
<10 IU/mL and 7 (58%) with negative HDV RNA by Robogene 
assay. A marked increase in ALT levels was observed after the 
introduction of pegIFNα in five patients but all remained asymp-
tomatic. All patients experienced at least one adverse event, 
mostly pegIFNα-related. The virological responses observed at 
week 24 off-therapy were confirmed when the off-treatment 
follow-up was extended up to 3 years.83

LNF with or without pegIFNα
LNF is an orally administered inhibitor of farnesyl-transferase 
that blocks the prenylation of L-HDAg, showing an intracel-
lular accumulation of RNPs and a dose-dependent reduction of 
serum HDV RNA. To optimise the risk-to-benefit ratio of this 
regimen, LNF was combined with ritonavir (RTV) to enable 
achieving higher (fourfold to fivefold) systemic exposure while 
improving its gastrointestinal tolerability, and with pegIFNα 

Table 1  Virological response in HDV patients treated with pegIFNα, BLV with or without pegIFNα, pegIFNλ, and LNF+RTV with or without 
pegIFNα

Treatment strategies

No of 
patients

HDV RNA 
levels (log 
IU/ml)

Duration of 
therapy
(weeks)

Virological response

HDV RNA <LLoQ
HDV RNA: >2 log IU/mL decline or 
<LLoQ

HDV RNA decline
(mean or median log IU/mL)

Baseline

During therapy Off-therapy During therapy Off-therapy During therapy Off-therapy

Week 24 Week 48 Week 24 Week 24 Week 48 Week 24 Week 24 Week 48 Week 24

PegIFNα 180 μg QW* 15 5.44 48 – 13.3% 0% – – 0% – −1.29 −0.26

BLV 2 mg every day 
mono*

15 6.39 48 13% 13.3% 6.7% – – 33.3% – −2.84 −1.08

BLV 10 mg every day 
mono*

15 5.6 48 27% 40% 33.3% – – 46.7% – −4.58 –

BLV 2 mg every day 
+pegIFNα 180 μg QW*

15 5.48 48 67% 80% 53.3% – – 73.3% – −5.21 −4.04

BLV 10 mg every day 
+pegIFNα 180 μg QW*

15 5.9 48 60% 86.7% 6.7% – – 33.3% – −6.09 –

LNF 50 mg two times per 
day+RTV 100 mg two 
times per day†

12 – 24 42% – – 39% – – −1.66 – –

LNF 50 mg two times per 
day+RTV 100 mg two 
times per day+pegIFNα 
180 μg QW†

4 – 24 50% – – 89% – – −3.71 – –

PegIFNλ 180 μg QW‡ 14 3.86 48 – 36% 36% – – – −2.72 −2.3 −1.86

LNF 50 mg two times per 
day+RTV 100 mg two 
times per day+pegIFNλ 
180 μg QW§

26 4.74 24 27% – 19% 96% – – −3.4 – –

*MYR203 study, HDV RNA assay LLoQ 10 IU/mL.
†LOWR-2 study, Robogene assay, LLoQ 14 IU/mL.
‡LIMT study, Robogene assay, LLoQ 14 IU/mL.
§LIFT HDV study, Quest Diagnostics Assay, HDV RNA LLoQ <40 IU/mL or <1.6 log IU/ml; ‘-’: data not published or not presented.
BLV, bulevirtide; HDV, hepatitis D virus; LNF, lonafarnib; pegIFNα, pegylated interferon-α; RTV, ritonavir.

Table 2  Biochemical response in HDV patients treated with pegIFNα, BLV with or without pegIFNα, pegIFNλ, and LNF+RTV with or without 
pegIFNα

Treatment strategies Patients (n)

ALT levels (U/L)

Duration of therapy (weeks)

ALT normalisation

Baseline

During therapy Off-therapy

Week 24 Week 48 Week 24

PegIFNα 180 μg QW* 15 90 48 – 26.7% 6.7%

BLV 2 mg every day mono* 15 84 48 – 66.6% 20%

BLV 10 mg every day mono* 15 73 48 60% 40% 33%

BLV 2 mg every day +IFNα 180 μg QW* 15 70 48 – 26.7% 46.7%

BLV 10 mg every day +pegIFNα 180 μg QW* 15 78 48 20% 26.7% 33%

LNF 50 mg two times per day+RTV 100 mg †two times per day 12 – 24 60% – –

LNF 50 mg two times per day+RTV 100 mg two times per 
day+pegIFNα 180 μg/QW†

4 – 24 78% – –

PegIFNλ 180 μg QW‡ 14 – 48 – 14% 36%

LNF 50 mg two times per day+RTV 100 mg two times per 
day+pegIFNλ 180 μg QW§

26 64 24 – – –

*MYR 203 study.
†LOWR-2 Study.
‡LIMT Study.
§LIFT HDV Study, ‘-’:data not published or not presented.
ALT, alanine aminotransferase; BLV, bulevirtide; HDV, hepatitis D virus; LNF, lonafarnib; pegIFNα, pegylated interferon-α; RTV, ritonavir.
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to achieve a more profound inhibition of viral replication and 
HBsAg levels.

In the phase II LOWR HDV-2, 3 and 4 studies,84–86 the effi-
cacy and safety of different doses of LNF+RTV in monotherapy 
or combined with pegIFNα administered for 12 or for 24 weeks 
were assessed. In summary, an all oral antiviral strategy based 
on LNF 50 mg two times per day+RTV 100 mg two times per 
day led to HDV RNA decline ≥2 log or below the lower limit 
of quantification (LLoQ) in 39% of patients (7 of 18) and ALT 
normalisation in 60% at week 24 (EOT) (tables  1 and 2). A 
combined therapy based on LNF+RTV+pegIFNα increased the 
EOT responses to 89% (8 of 9) and 78%, respectively (tables 1 
and 2). To date, the off-treatment virological or biochemical 
response rates of these regimens are not available.

PegIFNλ with or without LNF+RTV
Lambda IFN binds a unique receptor vs type I IFN, highly 
expressed on hepatocytes, which may lead to a better safety 
profile of this compound compared with pegIFNα.

The phase II LIMT HDV study evaluated the safety, toler-
ability, and efficacy of subcutaneous pegIFNλ monotherapy 
administered at the dose of 120 vs 180 μg QW in addition to 
TDF/entecavir (ETV) in 30 patients with chronic HBV/HDV 
coinfection87 (tables 1 and 2). At week 72, by per-protocol (PP) 
analysis, the proportion of patients with undetectable HDV 
RNA, ALT normalisation and combined endpoints (ALT normal-
isation +≥2 log IU/mL HDV RNA decline vs BSL) was 16% vs 
36%, 26% vs 36% and 11% vs 29%. Adverse events typically 
seen with pegIFNα were fewer, but 10% of patients experienced 
hyperbilirubinaemia and ALT/AST increases, that were reversible 
with dose reduction and without any signs of decompensation.

In the open-label phase II single arm LIFT HDV study, 26 
HDV patients received LNF+RTV+pegIFNλ 180 μg QW for 
24 weeks88 (tables  1 and 2). At week 24 (EOT), HDV-RNA 
decline was 3.2 (2.5–4.0) log IU/ml, 25/26 (96%) patients had a 
>2 log RNA decline and 11/26 (42%) patients had HDV RNA 
undetectable or <LLoQ. Dose reductions were required in 3/26 
(11%) patients and treatment discontinuation in 4/26 (15%). At 
week 48, 24 weeks off-therapy, the virological response defined 
as HDV RNA <40 IU/mL by Quest Diagnostics assay was 19% 
(5 of 26 patients) by intention-to-treat (ITT) analysis and 23% 
(5 of 22) by PP analysis.89

BLV with or without pegIFNα
BLV, previously named Myrcludex-B, and approved in 2020 in 
Europe under the branded name of Hepcludex, is a subcutane-
ously delivered lipopeptide that mimics the NTCP RBD of the 
L-HBsAg, inhibiting the HBV/HDV entry into the hepatocytes 
(see previous section on virology).

Short-term therapy
In the multicentre phase IIb MYR202 study,90 120 TDF-treated 
patients with chronic HBV/HDV coinfection were randomised 
to different BLV doses (2, 5 or 10 mg/day) or TDF monotherapy 
for 24 weeks. A 2-log decline or undetectable HDV RNA at EOT 
(week 24) was reached by 46%, 47% and 77% of the patients 
treated with increasing doses of BLV but only in 3% of those 
on TDF monotherapy. ALT normalised in 43%, 50%, 40%, and 
6%, while HBsAg levels were not affected. BLV was well toler-
ated, and elevation of glycine-conjugated and taurine-conjugated 
bile salts had no clinical consequences. An HDV-RNA relapse 

Figure 5  Study design of the two ongoing phase III studies assessing the efficacy and safety of new therapeutic regimens against HDV. (A) D-LIVR 
study. LNF +RTV: LNF 50 mg two times per day+RTV 100 mg two times per day. Primary endpoint: ≥2 log10 IU/mL decline in HDV RNA and ALT 
normalisation in week 48. All patients will be maintained on background HBV nucleoside/nucleotide analogue therapy. (B) MYR301 study. primary 
endpoint: undetectable HDV RNA or decrease by ≥2log10 IU/mL and ALT normalisation in week 48. If indicated treatment with nucleoside/nucleotide 
analogues according to European Association for the Study of the Liver (EASL)/American Association for the Study of the Liver (AASLD) guidelines. 
ALT, alanine aminotransferase; BLV, bulevirtide; HBV, hepatitis B virus; HDV, hepatitis D virus; LNF, lonafarnib; pegIFNα, pegylated interferon-α; RTV, 
ritonavir;
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occurred in 60%, 80% and 83% of EOT HDV-RNA responders 
and was associated with a moderate increase in ALT levels.

In the phase II MYR203 study91 treatment with BLV, at 
different doses and with or without peg-IFN, was extended 
to 48 weeks (tables  1 and 2). 90 patients with chronic HBV/
HDV coinfection were randomised into six treatment arms. The 
primary efficacy endpoint, HDV RNA below the LLoD (10 IU/
mL) at week 72 (24 weeks off-therapy), was achieved by 0%, 
53.3%, 26.7%, 6.7%, 6.7% and 33.3% of patients randomised 
to pegIFNα 180 QW, 2 mg BLV+pegIFNα, 5 mg BLV+pe-
gIFNα, 5 mg BLV, 10 mg BLV+pegIFNa and 10 mg BLV, respec-
tively. The corresponding ALT normalisation rates were 10%, 
53.8%, 33.3%, 23.1%, 35.7% and 35.7%. HBsAg loss or >1 log 
IU/ decline at week 72 was observed only in patients treated with 
BLV combined with pegIFNα: 40% for BLV 2 mg, 13.3% for 
5 mg and 13.3% for 10 mg. BLV was generally well tolerated; 
an asymptomatic dose-related increase of total bile acids was 
observed. Most adverse events were observed in patients treated 
with pegIFNα, without any difference between patients treated 
as a monotherapy or in combination with BLV.

Long-term therapy
Two patients with compensated HDV-related cirrhosis, one with 
oesophageal varices, were treated with BLV monotherapy 10 mg 
for up to 3 years.71 Both cases normalised ALT levels before 
week 28 and achieved undetectable HDV RNA (<6 IU/mL by 
Robogene assay) before week 52. Biochemical and virological 
responses were maintained over 3 years of BLV administration 
without relapse or breakthrough, even after dose reduction of 
BLV from 10 to 5 and 2 mg/day.92 In the patient with more severe 

liver disease, virological response was associated with an excel-
lent clinical response: oesophageal varices disappeared, histo-
logical/laboratory features of autoimmune hepatitis secondary to 
HDV infection resolved, AFP levels normalised and liver stiff-
ness, platelets and albumin levels significantly improved. As far as 
safety is concerned, only asymptomatic, dose-related increase of 
total bile acids was observed. The optimal duration of long-term 
therapy with BLV monotherapy is at present unknown although 
application of an HCV-based kinetics model to HDV-infected 
patients suggests that after 3 years of continuous suppression of 
HDV replication by BLV more than 50% of the patients might 
achieve a long-term off-therapy virological response, despite 
persistence of HBsAg 93 and unpublished data).

New anti-HDV strategies: ongoing phase III studies
Two multicentre international phase III registration studies are 
ongoing (figure 5). In the D-LIVR study (EIG-LNF-011), 400 
patients with chronic HBV/HDV coinfection will be randomised 
to four treatment arms (figure 5A) for 48 weeks. The primary 
endpoint is the proportion of patients achieving a≥2 log10 IU/ml 
reduction in serum HDV-RNA level and ALT normalisation at 
week 48 (EOT). In the MYR301 study, 150 patients with chronic 
HBV/HDV coinfection have been randomised to three different 
arms (figure 5B). The primary objective is to evaluate the safety 
and efficacy of different doses of BLV monotherapy adminis-
tered up to 144 weeks. The total duration of the study is 240 
weeks.

New therapeutic approaches targeting HBsAg
Apart from the above-mentioned therapies, any new therapeutic 
that leads to functional cure in HBV monoinfected patients 
could be helpful in HBV/HDV coinfected ones.72 RNA interfer-
ence and antisense oligonucleotides showed substantial declines 
of HBsAg in few weeks of administration in the absence of peg-
IFN, suggesting a potential role also in the treatment of coin-
fected patients.

Current treatment options
BLV at a dose of 2 mg sc every day was approved by EMA in 
2020 and is beside off-label use of pegIFNαthe only treatment 
option, at least in the EU. FDA approval is pending. BLV could 
be used either in combination with pegIFNα (without formal 
EMA approval) or as monotherapy. A ‘curative’ strategy based 
on short-term (48 week) administration of sc daily injections of 
2 mg BLV combined with pegIFNα may result in HBsAg response 
and sustained off-therapy HDV-RNA negativity in some patients 
and may be used preferentially in those patients with well-
compensated disease. For the many HDV patients who cannot 
be treated with pegIFNα for different reasons, administration 
of BLV monotherapy may be a promising ‘suppressive’ strategy. 
However, the current data indicate that the approved low dose 
(2 mg every day) is suboptimal and the optimal duration of high-
dose therapy and its long-term safety profile is currently inves-
tigated (MYR301 trial). Studies on the safety in patients with 
decompensated cirrhosis are required and a more convenient 
mode of administration or less frequent administrations would 
be desirable.

CONCLUSIONS
Forty years after the discovery of HDV, the first anti-HDV thera-
peutic has been approved in Europe, indicating the beginning of 
a new era for these difficult to treat/cure patients. Nevertheless, 
many questions related to HDV virology and immunology that 

Box 1  Open questions and future directions

►► Can hepatitis D virus (HDV) establish transcriptionally 
silenced but reactivatable episomes in hepatocytes as an 
additional mechanism of persistence?

►► To what extent do the eight HDV genotypes differ in 
replication efficacy and sensitivity against the upcoming 
novel treatments?

►► Do HDV-targeted therapies lead to a restoration of HDV-
specific immunity?

►► Are these restored immune responses required for treatment 
response? Are they required for prevention of viral relapse? 
Of note, there may be differences in treatment regimens that 
are associated with alanine aminotransferase (ALT) flares 
(eg, REP2139Ca+pegylated interferon-α (IFN α) combination 
therapy) compared with treatment regimens without ALT 
flares (eg, BLV monotherapy).

►► How can a synergistic potential of antiviral drugs and 
immune-modulators be translated into curative regimens?

►► Are there baseline or on-treatment predictors (eg, immune 
responses, kinetics of virological response) to sustained HDV 
virological response for the different treatment strategies?

►► Is a sustained HDV virological response without hepatitis B 
surface antigen (HBsAg) loss a realistic and achievable aim 
for treatment regimens without IFNs?

►► Are drugs aiming at HBsAg loss effective and safe in patients 
with chronic hepatitis B virus/HDV coinfection?

►► Last but not least, since HDV is prevalent in low-income 
countries and migrant populations, it will be important to 
establish new concepts to foster diagnosis and access to 
care.
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affect sustained treatment responses to novel drugs remain to be 
solved (see box 1 ‘Open questions and future directions’), and a 
deeper understanding of virological and immunological mecha-
nisms contributing to viral control will help to advance on the 
road to HDV eradication.
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