Liver injury, hypoalbuminaemia and severe SARS-CoV-2 infection

We have read with interest the recent study published in *Gut* by Weber *et* al^1 outlining liver abnormalities in 217 patients admitted with COVID-19 infection in Germany. Along with respiratory failure, deranged liver blood tests have been demonstrated in many cohort studies of patients admitted with SARS-CoV-2 infection, the clinical relevance of which has been unclear to date.^{2 3}

The authors of this study demonstrated that deranged liver blood tests on admission were associated with more severe morbidity and mortality. Notably, hypoalbuminaemia on admission in this cohort was associated with a severe COVID-19 disease course.

A review of 310 patients admitted with COVID-19 to our institution in Dublin revealed abnormal liver blood tests were present in almost 50% of patients, in particular raised gammaglutamyl transferase (gGT) levels (table 1), similar to that noted by Weber and colleagues.¹ In our patient cohort, hypoalbuminaemia on admission to hospital was also an independent predictor of mortality, validating the findings of their prospective study. Multivariate analysis of our cohort showed significant association а between COVID-19-related mortality and serum albumin on admission (OR 0.90, 0.85-0.96; p=0.002; in a model incorporating older age, male sex, high MULBSTA score (a predictive score of viral pneumonia mortality⁴) and body mass index, hypoalbuminaemia predicted death, with area under the curve receiver operating characteristic at 0.8 (figure 1). A notable elevation in liver blood tests, especially gGT, was evident in this cohort, and no association between this elevation in liver blood tests and mortality was identified. The findings outlined here are taken from a local study entitled 'COVID-19 and liver blood test derangement'.

The exact relationship between SARS-CoV-2 infection, liver injury and hypoalbuminaemia has not yet been determined and warrants further investigation.⁵ Naturally, albumin is a negative acute phase reactant, and decreased albumin levels may simply reflect severe systemic inflammation^{6 7}; in our cohort albumin levels correlated significantly with other inflammatory markers such as C reactive protein (CRP) and white cell count (Spearman's r = -0.36 and r = -0.31for albumin vs CRP and albumin vs white cell count, respectively; both p<0.0001).

The findings of both Weber $et al^1$ and our study highlight the potential clinical utility of albumin levels to identify admitted patients with COVID-19 at a higher risk of mortality. Further studies to elucidate the underlying pathophysiological mechanisms are warranted.

Clare Elizabeth Foley ^(a), ¹ Christopher Mulvey, ² Maria Boylan, ³ Niamh Reidy, ⁴ Paul Reidy, ⁴ David Moynan, ⁴ Amy Worrall, ⁴ Ger Curley, ^{2,3} Karen Boland, ^{2,5} Eoghan de Barra, ^{2,4} John D Ryan^{1,2}

¹Department of Hepatology, Beaumont Hospital, Dublin, Ireland

²Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland

³Department of Anaesthesia, Beaumont Hospital,

Dublin, Ireland

⁴Department of Infectious Diseases, Beaumont Hospital, Dublin, Ireland

⁵Department of Gastroenterology, Beaumont Hospital, Dublin, Ireland

Correspondence to Dr Clare Elizabeth Foley, Department of Hepatology, Beaumont Hospital, Dublin 9, Ireland; foleyclare123@gmail.com

Contributors CEF collected and analysed the data. CM and KB carried out the statistics on the data. MB, NR, PR and AW collected the data. GC, EdB and JR supervised the project.

Table 1 Baseline characteristics and liver blood tests on admission for 310 COVID-19 patients	
Baseline characteristics*	Patients with COVID-19 (N=310)
Age, median (years)	69 (range 21–95)
Male gender, % (n)	61 (188/310)
Ethnicity, % (n)	
Caucasian	96.5 (299/310)
Black	1.6 (5/310)
Romany	1.9 (6/310)
BMI (kg/m ²)	26 (15–55)
CRP (mg/L)	155 (1.6–510)
MULBSTA score, median	9 (range 2–19)
Death, % (n)	26.8 (83/310)
Liver blood tests on admission, % (n)	
Bilirubin >20 µmol/L (range 0–21 µmol/L)	5 (18/310)
ALT >40 IU/L (range 0–41 IU/L)	20 (62/310)
AST >40 IU/L (range 0–40 IU/L)	28 (87/310)
Alkaline phosphatase >130 IU/L (range 40–130 IU/L)	17 (54/310)
GGT > 40 IU/L (range 0–59 IU/L)	48 (150/310)

*Mean (±SD) unless stated.

Albumin <35 g/L (range 35–52 g/L)

ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; CRP, C reactive protein; GGT, gamma-glutamyl transferase.

23 (71/310)

Figure 1 Hypoalbuminemia ROC when incorporated into model.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

Patient consent for publication Not required.

Ethics approval The study where the findings outlined here were taken was approved by the Beaumont Hospital Research Ethics Committee.

Provenance and peer review Not commissioned; externally peer reviewed.

This article is made freely available for use in accordance with BMJ's website terms and conditions for the duration of the covid-19 pandemic or until otherwise determined by BMJ. You may use, download and print the article for any lawful, non-commercial purpose (including text and data mining) provided that all copyright notices and trade marks are retained.

© Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ.

Check for updates

To cite Foley CE, Mulvey C, Boylan M, et al. Gut 2022;71:225–226.

Received 3 March 2021 Accepted 19 May 2021 Published Online First 2 June 2021

Gut 2022;**71**:225–226. doi:10.1136/ gutjnl-2021-324570

ORCID iD

Clare Elizabeth Foley http://orcid.org/0000-0002-4543-2486

REFERENCES

- Weber S, Hellmuth JC, Scherer C, et al. Liver function test abnormalities at hospital admission are associated with severe course of SARS-CoV-2 infection: a prospective cohort study. *Gut* 2021;70:1925–32.
- 2 Yadav DK, Singh A, Zhang Q, et al. Involvement of liver in COVID-19: systematic review and meta-analysis. *Gut* 2021;70:807–9.

- 3 Cai Q, Huang D, Yu H, *et al*. COVID-19: abnormal liver function tests. *J Hepatol* 2020;73:566–74.
- 4 Guo L, Wei D, Zhang X, et al. Clinical features predicting mortality risk in patients with viral pneumonia: the MuLBSTA score. Front Microbiol 2019;10:2752.
- 5 Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 2020;130:2620–9.
- 6 Gatta A, Verardo A, Bolognesi M. Hypoalbuminemia. Intern Emerg Med 2012;7(Suppl 3):193–9.
- 7 Soeters PB, Wolfe RR, Shenkin A. Hypoalbuminemia: pathogenesis and clinical significance. *JPEN J Parenter Enteral Nutr* 2019;43:181–93.