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Characteristic (%)

Before PS adjustment After PS adjustment Before PS adjustment After PS adjustment

PPI 
(n=1 01 438)

Non- PPI 
(n=3 53 266) SMD

PPI (n=11 
741)

Non- PPI 
(n=11 741) SMD

PPI (n=10 
708)

H2RA 
(n=1 19 493) SMD

PPI
(n=5067)

H2RA
(n=5067) SMD

Values are presented as proportion of the patients (%).
*The applicated raw database was the National Health Insurance Service Common Data Model.

GORD, gastro- oesophageal reflux disease; H2RA, histamine 2 receptor antagonist; PPI, proton pump inhibitor; PS, propensity matching; SMD, standard mean difference.

Table 1 Continued

last day of the eradication treatment as 
the index date. While the authors have 
mentioned in the discussion section 
that they could not determine H. Pylori 
infection status by a laboratory test, it 
is important to know if both groups 
were matched regarding clarithromycin 
based triple therapy or bismuth- based 
quadruple therapy, as they might differ 
in efficacy considering 20% resistance 
rate to clarithromycin in Korea.2 The 
authors also mentioned a cumulative 
dose–response relationship between 
increasing PPI duration and the risk of 
gastric cancer development. Though it 
is  true  for  PPI≥30 and≥180  days,  the 
same  is  not  true  for  PPI≥365 days,  as 
the result was not statistically signifi-
cant  (PPI≥365  days,  HR  3.5,  95% CI 
0.85 to 23.49, p value 0.14).

Summarily, the gastric cancer incidence 
rate is higher in Korean men than women 
when  we  compare  ≥40  years  of  age 
groups.3 Hence, it is important to know 
if gender was equally distributed for each 
age range in table 1. Our concern is if the 
PPI group had more men in ≥40 years age 
group, it can skew the result in the favour 
of PPI.
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Hidden link in gut–joint axis: 
gut microbes promote 
rheumatoid arthritis at early 
stage by enhancing 
ascorbate degradation

With great interest, we read the review 
article by Agus et al, which suggested 
that gut microbiome alterations could 
affect metabolic homeostasis.1 More-
over, gut microbiome alterations in 
concert with metabolites perturbation 
could contribute to the early develop-
ment of rheumatoid arthritis (RA).2 We 
thus conducted a three- pronged asso-
ciation study3 on multiomics datasets 
to detect the potential microbiome–
metabolites–arthritis link.

We integrated multiomics datasets 
including gut metagenomics, clinical 
phenotypes and metabolites of blood 
and knee- joint synovial fluid from 
122 participants in the healthy group 
(n=27), osteoarthritis (OA) group 

(n=19) and RA group (n=76), using 
a three- pronged association frame-
work (figure 1, online supplemental 
material).3 Metagenomic genes were 
collapsed into metagenomic species 
(MGS)3 4 and grouped into KEGG func-
tional modules (figure 1A).3 Addition-
ally, the co- abundant metabolites were 
categorised into metabolite clusters 
using WGCNA framework (figure 1A).3 
The functional modules associated 
with clinical phenotypes (eg, types of 
arthritis and levels of cytokines) were 
further identified and the cross- domain 
associations between these modules 
and metabolite clusters were assessed 
(figure 1B).3 Furthermore, the leave- 
one- out analysis was performed to 
determine the MGS that particularly 
contributed to the observed linkage 
between functional modules and clin-
ical phenotypes (figure 1C).3

We found that gut microbial functionality 
in ascorbate degradation (KEGG module: 
M00550) was positively correlated 
with the types of arthritis (healthy=0, 
OA=1, RA=2, pWilcox=2.15×10–4) and 
the levels of proinflammatory cyto-
kines TNF-α (tumour necrosis factor-α, 
pWilcox=6.59×10–4) and IL- 6 (interleu-
kin- 6, pWilcox=1.12×10–3). Ascorbate 
(vitamin C) was previously reported to 
prevent the development of inflammatory 
arthritis,5 possibly through facilitating 
collagen synthesis, moderating autoim-
mune responses and ameliorating inflam-
mation.6 Additionally, the patients with RA 
are usually ascorbate deficient and require 
high- dose supplementation to maintain an 
acceptable plasma level of ascorbate.7 In 
this study, the functional module of ascor-
bate degradation was observed to posi-
tively correlate with the blood metabolite 
cluster MB02 (pWilcox=6.90×10–3), which 
was represented by the level of palmitic 
acid (kME (eigengene- based connectivity) 
=0.911, kIN (intramodular connectivity) 
=3.46, online supplemental table 1) that 
acts as a proinflammatory factor, upregu-
lating IL- 6 secretion by human chondro-
cytes and fibroblast- like synovial cells in 
inflammatory arthritis.8 Furthermore, we 
found that Escherichia coli and Strepto-
coccus bovis were the driving species for 
the observed linkage between ascorbate 
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Metabolites
Blood metabolites (277)
SF metabolites (248)

Gut microbiome
microbial genes (4M)

Blood metabolites
clusters (43)

SF metabolites
clusters (31)

Gene groups
KEGG orthology

WGCNA

Microbiome functional modules
KEGG (404)

MGSs (553)

MGS framework

Phenotypes
Arthritis types
Arthritis typesadj

Phenotypes
TNF-α, TNF-αadj
IL-6, IL-6adj

Phenotype association filtering (FDR < 0.1)

Phenotypes
Arthritis types
Arthritis typesadj
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Figure 1 Overview of the three- pronged association framework integrating multiomics datasets. 
(A) Metabolites are summarised as co- abundance clusters, and microbial genes are grouped 
into KEGG modules and MGS, which are further filtered for statistically positive or negative 
associations (based on Spearman correlation) with the clinical phenotypes. The association 
analyses were divided by using healthy, OA and RA samples for arthritis types and using OA and 
RA samples for cytokine levels. The number in brackets represent the number of metabolites/
metabolite clusters/microbial genes/KEGG modules/MGS in each analytical module. (B) The 
filtered features are further used for cross- domain association analyses. For each analysis, the 
left panel shows the significant associations (Mann- Whitney U test FDR<0.1) between KEGG 
modules and clinical phenotypes, and colour indicates significantly positive association (red), 
significantly negative association (blue) or insignificant association (grey). The right panel shows 
the associations between KEGG modules and metabolite clusters, and the colour represents the 
median Spearman correlation coefficient (SCC) of metabolite clusters with KEGG orthologies 
(KOs) in KEGG module minus those with KOs not in KEGG module. Mann- Whitney U test FDRs 
are denoted: +FDR<0.1; *FDR<0.01; **FDR<0.001. (C) The MGS that particularly contributed to 
the observed linkage between functional modules and clinical phenotypes. Three density plots: 
Dashed line represents the median SCC of the phenotypes with KOs in M00550 (red) and all other 
KOs (blue). Density plot shows the median SCC of the phenotypes with KOs in M00550, when a 
given MGS (indicated by short vertical lines) has been excluded from the analysis. The bottom- 
left dot plots show the mean±SEM of the top three driving MGS abundances among patients at 
each stage of disease development, with the four RA stages connected to display the variance. 
FDR, false discovery rate; IL- 6, interleukin- 6; MGS, metagenomic species; OA, osteoarthritis; RA, 
rheumatoid arthritis; TNF-α, tumour necrosis factor-α.

degradation9 and the arthritis types or 
the cytokines levels of TNF-α and IL- 6 
(figure 1C). Subsequently, we grouped 
patients with RA by four stages according 
to the comprehensive scores in rheuma-
toid diagnostic criteria,10 as RASI: 6–7, 
RASII: 8, RASIII: 9 and RASIV: 10 (online 
supplemental table 2). We observed that 
both E. coli and S. bovis were prevalent 
at RA stage I (RASI), while S. bovis was 
depleted after RASI or in the OA group. 
It suggested S. bovis mainly functioned at 
the early stage of RA, while E. coli might 
be crucial throughout the entire devel-
opmental stages of RA and OA. Taken 
together, we speculate that E. coli and S. 
bovis could facilitate ascorbate degrada-
tion and thus promote proinflammatory 
responses that facilitate the development 
of inflammatory arthritis.

Overall, we demonstrate that gut 
microbiota could promote RA progres-
sion via enhancing ascorbate degrada-
tion and provide a potential approach 
to prevent the development of arthritis 
through interfering gut–joint axis. The 
results of this study could be prospected 
in following contexts: First, our study 
provides a reservoir of the potential 
microbiome–metabolites–arthritis links 
as a reference of gut–joint axis for future 
studies. Second, the findings supplement 
the potential mechanisms related to meta-
bolic perturbation through which gut 
microbiome promotes arthritis.1 2 Third, 
considering the inflammatory pathways 
of arthritis were revisited in COVID- 19,11 
it deserves further investigations whether 
microbiome–ascorbate–inflammation link 
of this study could contribute to the treat-
ment of COVID- 19.
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OLGIM staging and proton 
pump inhibitor use predict the 
risk of gastric cancer

We read with great interest the recent 
publication written by Lee et al1 in which 
the authors conducted a prospective, 
longitudinal and multicentre study to 
evaluate the association between intes-
tinal metaplasia (IM) and gastric cancer 
(GC). As expected, IM was found to be 
a significant risk factor for GC (adjusted 
HR (aHR) 5.46; 95% CI 1.51 to 19.0). 
Nevertheless, operative link on gastric 
IM (OLGIM) staging was more closely 
correlated with the risk of GC (stage III/

IV; aHR 20.7; 95% CI 5.04 to 85.6, and 
stage II; aHR 7.34; 95% CI 1.60 to 33.7). 
They concluded that risk stratification of 
GC based on OLGIM staging was useful 
for endoscopic surveillance.

We agree with their results that OLGIM 
staging is the most important predictor 
for GC, although there are many other 
risk factors of GC. According to our find-
ings and those of others, long- term use of 
proton pump inhibitors (PPIs) is associ-
ated with an increased risk of GC, partic-
ularly in patients with advanced IM.2 
Therefore, we hypothesise that combining 
the information of PPI use with OLGIM 
staging may improve the accuracy of GC 
prediction.2–4

Using our endoscopic database, we esti-
mated the effect of multiple parameters, 
such as OLGIM staging and PPI use, on the 
prediction of GC. The OLGIM stage was 
determined in line with the previous study;5 
furthermore, we evaluated the IM distribu-
tion in the antrum and corpus from single 
biopsy specimens from each site.6

In total, 1551 patients with gastric 
mucosa biopsy (male, 51.3%; mean 
age, 69.7 years) were selected from 
the database of University of Tokyo 
Hospital from 1998 to 2017. During a 
mean follow- up period of 6.3 years, 95 
patients developed GC. Patient char-
acteristics are shown in table 1. We 
developed two predictive models for 
predicting posteradicated GC, with the 
variables of age, sex and the following 
factors: (1) OLGIM stage and (2) 
OLGIM stage and PPI use. Furthermore, 
we calculated the cumulative area under 
the curve (AUC) during all observational 
time points (table 2).

PPI use (aHR 3.09; 95% CI 2.02 to 
4.74), IM distribution (antral IM (aHR 
2.12; 95% CI 1.27 to 3.51), corpus IM 
(aHR 3.98; 95% CI 2.40 to 6.58) and 
OLGIM stage (stage I (aHR 2.43; 95% 
CI 1.47 to 4.03), stage II (aHR 2.70; 
95% CI 1.52 to 4.80), stage III (aHR 
4.28; 95% CI 2.08 to 8.82) and stage 
IV (aHR 7.17; 95% CI 2.41 to 21.32)) 
were associated with an increased risk 
of GC, while aHR is greatest in patients 
with advanced OLGIM staging.

The cumulative AUC of the model 
with PPI use (0.74, 95% CI 0.66 to 
0.82) was higher than that of the model 
without PPI use (0.71, 95% CI 0.64 to 
0.79).

Our findings suggest that OLGIM 
staging, even if only scored by one biopsy 
specimen from the antrum and corpus, 
could accurately predict the risk of GC. 
Nevertheless, information regarding PPI 
use significantly improves the accuracy 
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Sample description 29 

A total of 122 fecal and 122 serum samples were collected from 122 outpatients from 30 

the Shandong Provincial Qianfoshan Hospital (Jinan, Shandong, China). These 31 

outpatients included 27 healthy individuals, 19 patients with osteoarthritis (OA), and 32 

76 patients with rheumatoid arthritis (RA). Subsequently, the fecal samples were 33 

sequenced and the serum samples were used to examine serum metabolites and 34 

inflammatory cytokines. Serum inflammatory cytokines TNF-α and IL-6 were 35 

quantified by the MESO SCALE DISCOVERY (MSD®) Quick Plex S600MM 36 

multiplex assay. The cytokine levels of healthy individuals were extremely low and not 37 

available. In addition, 95 knee-joint synovial fluid samples were collected from the RA 38 

and OA patients to examine synovial fluid metabolites. Both serum and synovial fluid 39 

metabolites were examined by UHPLC-MS/MS. 40 

All of the participants were at fasting status during sample collection in the morning. 41 

The participants were recruited in this study following the standards shown below: 42 

1. Healthy individuals in good health condition with no gastrointestinal diseases, such 43 

as diarrhea, constipation, and hematochezia, in the recent one month, no 44 

hepatobiliary system diseases, no history of gastrointestinal tumors or inflammatory 45 

diseases, no serious heart, liver, kidney, lung, brain or other organ disorders, no 46 

infections, chronic diseases, or antibiotic treatment; 47 

2. Healthy individuals had not taken any acid inhibitors, gastrointestinal motility drugs, 48 

antibiotics, or living bacteria products such as yogurt in the recent one month; 49 

3. Healthy individuals with no history or family history of mental illness, and no 50 

history of gastrointestinal surgery; 51 

4. RA/OA individuals with no other co-morbidity. 52 

Metagenome sequencing and data processing 53 

Whole-genome shot-gun sequencing of fecal samples were carried out on the Illumina 54 

Hiseq X Ten. All samples were paired-end sequenced with a 150-bp read length. After 55 
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quality control, the paired-end reads were assembled into contigs using MEGAHIT 56 

(version 1.2.6)1 with the minimum contig length set at 500 bp. The open reading frames 57 

(ORFs) were predicted from the assembled contigs using Prodigal (version 2.6.3)2 with 58 

default parameters. The ORFs of <100 bp were removed. The ORFs were then clustered 59 

to remove redundancy using Cd-hit (version 4.6.6)3 with a sequence identity threshold 60 

set at 0.95 and the alignment coverage set at 0.9, which resulted in a catalog of 61 

4,047,645 non-redundant genes. The non-redundant genes were then collapsed into 62 

metagenomic species (MGS)4 5 and grouped into KEGG functional modules.4 63 

Identification of MGS 64 

High-quality reads were mapped to the catalog of non-redundant genes using Bowtie 2 65 

(version 2.2.9)6 with default parameters. The abundance profile for each catalogue gene 66 

was calculated as the sum of uniquely mapped sequence reads, using 19M sequence 67 

reads per sample (downsized). The co-abundance clustering of the 4,047,645 genes was 68 

performed using canopy algorithm (http://git.dworzynski.eu/mgs-canopy-algorithm),5 69 

and 553 gene clusters that met the previously described criteria5 and contained more 70 

than 700 genes were referred to as MGS. MGS present in at least 4 samples were used 71 

for the following analysis. The abundance profiles of MGS were determined as the 72 

medium gene abundance throughout the samples. MGS were taxonomically annotated 73 

as described by Nielsen et al.5 and each MGS gene was annotated by sequence 74 

similarity to NCBI bacterial genome (BLASTN, E-value < 0.001) 75 

Annotation of KEGG modules 76 

The catalog of the non-redundant genes was functionally annotated to KEGG database 77 

(release 94.0) by KofamKOALA (version 1.3.0).7 8 The produced KEGG Orthologies 78 

(KOs) were mapped to the KEGG modules annotation downloaded on August 1, 2020 79 

from the KEGG BRITE database. KOs present in at least 4 samples were used for the 80 

following analysis. The KO abundance profile was calculated by summing the 81 
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abundances of genes that were annotated to each KO. 82 

Clustering of co-abundant metabolites 83 

Co-abundant metabolites in serum or synovial fluid were identified using the R package 84 

WGCNA9. As recommended by Pedersen et al.,4 a signed network and biweighted mid-85 

correlation were used for clustering with the soft threshold β = 8 for both serum and 86 

synovial fluid metabolites. The minimum cluster size was set as 3. Similar clusters were 87 

subsequently merged if the biweight mid-correlation between the cluster’s eigen 88 

vectors exceeded 0.8 for both serum and synovial fluid metabolites. The kIN of a 89 

metabolite was calculated by summing connectivity with all other metabolites in the 90 

given metabolite cluster. The kME was determined by the bicor-correlation between 91 

the metabolite profile and module eigenvector. Both kIN and kME were used to 92 

measure the intramodular hub-metabolite status. 93 

Cross-domain association analyses 94 

The clinical phenotypes, including types of arthritis (Healthy = 0, OA = 1, RA = 2) and 95 

the levels of pro-inflammatory cytokines TNF-α and IL-6, were used in the association 96 

analysis. TNF-α and IL-6 were selected based on their potentials to act as the 97 

therapeutic targets for RA treatment.10 11 The associations between clinical phenotypes 98 

and KEGG modules/metabolites clusters were determined through evaluating if the 99 

Spearman correlations of the phenotype with the abundances of KOs/metabolites in the 100 

given KEGG module/metabolite clusters were significantly higher or lower (Mann–101 

Whitney U-test FDR < 0.1) than with the abundances of all other KOs/metabolites. The 102 

phenotypes adjusted by age and gender were also tested. Moreover, the union set of the 103 

significant associations between KEGG modules and phenotypes/phenotypes adjusted 104 

by age and gender, and the intersect set of the significant associations between 105 

metabolites clusters and phenotypes/phenotypes adjusted by age and gender, were used 106 

for the following association analysis. The associations between metabolite clusters and 107 
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KEGG modules were determined through evaluating if the Spearman correlations of 108 

the eigen vectors of the metabolite clusters with the abundances of KOs in the given 109 

KEGG module were significantly higher or lower (Mann–Whitney U-test FDR < 0.1) 110 

than with the abundances of all other KOs/metabolites. 111 

Leave-one-out analysis 112 

Leave-one-out analysis was used to identify the specific MGS driving the observed 113 

associations between KEGG module M00550 and the clinical phenotypes, including 114 

the types of arthritis or the levels of pro-inflammatory cytokines TNF-α and IL-6. The 115 

calculation of the KO abundance was iterated excluding the genes from a different MGS, 116 

in each iteration. The effect of a given MGS on a specified association was defined as 117 

the change in median Spearman correlation coefficient between KOs and clinical 118 

phenotypes when genes from the respective MGS were left out, as previously 119 

described.4 12 120 

Taxonomic identity of differentially present microbes across conditions 121 

MetaPhlAn213 was used to generate species profiles. Species that were present in less 122 

than 10% samples were excluded. Supplementary Figure 1 displays the union set of the 123 

species (n=15) with significantly different abundances (Mann–Whitney U-test FDR < 124 

0.05) between the healthy and RA groups or between the healthy and OA groups. 125 

 126 
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 127 

Supplementary figure 1 Taxonomic identity of differentially present microbes across 128 

conditions. Each row represents a species with significantly different abundances 129 

(Mann–Whitney U-test FDR < 0.05) between the healthy and RA groups or between 130 

the healthy and OA groups. Each column represents a sample from one of the groups 131 

including the healthy, RAP1, RAP2, RAP3, RAP4, and OA groups. Color of each 132 

heatmap unit represents the scaled abundance of a certain species in a specific sample. 133 

Species are colored for significantly elevation (red) or depletion (green) in the arthritis 134 

groups, in comparison with the healthy groups. 135 

Data accession 136 

Whole-genome shot-gun sequencing data are available in the Genome Sequence 137 

Archive (GSA) section of National Genomics Data Center (project accession number 138 

CRA004348) at https://bigd.big.ac.cn/gsa/browse/CRA004348. 139 
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Sample description 29 

A total of 122 fecal and 122 serum samples were collected from 122 outpatients from 30 

the Shandong Provincial Qianfoshan Hospital (Jinan, Shandong, China). These 31 

outpatients included 27 healthy individuals, 19 patients with osteoarthritis (OA), and 32 

76 patients with rheumatoid arthritis (RA). Subsequently, the fecal samples were 33 

sequenced and the serum samples were used to examine serum metabolites and 34 

inflammatory cytokines. Serum inflammatory cytokines TNF-α and IL-6 were 35 

quantified by the MESO SCALE DISCOVERY (MSD®) Quick Plex S600MM 36 

multiplex assay. The cytokine levels of healthy individuals were extremely low and not 37 

available. In addition, 95 knee-joint synovial fluid samples were collected from the RA 38 

and OA patients to examine synovial fluid metabolites. Both serum and synovial fluid 39 

metabolites were examined by UHPLC-MS/MS. 40 

All of the participants were at fasting status during sample collection in the morning. 41 

The participants were recruited in this study following the standards shown below: 42 

1. Healthy individuals in good health condition with no gastrointestinal diseases, such 43 

as diarrhea, constipation, and hematochezia, in the recent one month, no 44 

hepatobiliary system diseases, no history of gastrointestinal tumors or inflammatory 45 

diseases, no serious heart, liver, kidney, lung, brain or other organ disorders, no 46 

infections, chronic diseases, or antibiotic treatment; 47 

2. Healthy individuals had not taken any acid inhibitors, gastrointestinal motility drugs, 48 

antibiotics, or living bacteria products such as yogurt in the recent one month; 49 

3. Healthy individuals with no history or family history of mental illness, and no 50 

history of gastrointestinal surgery; 51 

4. RA/OA individuals with no other co-morbidity. 52 

Metagenome sequencing and data processing 53 

Whole-genome shot-gun sequencing of fecal samples were carried out on the Illumina 54 

Hiseq X Ten. All samples were paired-end sequenced with a 150-bp read length. After 55 
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quality control, the paired-end reads were assembled into contigs using MEGAHIT 56 

(version 1.2.6)1 with the minimum contig length set at 500 bp. The open reading frames 57 

(ORFs) were predicted from the assembled contigs using Prodigal (version 2.6.3)2 with 58 

default parameters. The ORFs of <100 bp were removed. The ORFs were then clustered 59 

to remove redundancy using Cd-hit (version 4.6.6)3 with a sequence identity threshold 60 

set at 0.95 and the alignment coverage set at 0.9, which resulted in a catalog of 61 

4,047,645 non-redundant genes. The non-redundant genes were then collapsed into 62 

metagenomic species (MGS)4 5 and grouped into KEGG functional modules.4 63 

Identification of MGS 64 

High-quality reads were mapped to the catalog of non-redundant genes using Bowtie 2 65 

(version 2.2.9)6 with default parameters. The abundance profile for each catalogue gene 66 

was calculated as the sum of uniquely mapped sequence reads, using 19M sequence 67 

reads per sample (downsized). The co-abundance clustering of the 4,047,645 genes was 68 

performed using canopy algorithm (http://git.dworzynski.eu/mgs-canopy-algorithm),5 69 

and 553 gene clusters that met the previously described criteria5 and contained more 70 

than 700 genes were referred to as MGS. MGS present in at least 4 samples were used 71 

for the following analysis. The abundance profiles of MGS were determined as the 72 

medium gene abundance throughout the samples. MGS were taxonomically annotated 73 

as described by Nielsen et al.5 and each MGS gene was annotated by sequence 74 

similarity to NCBI bacterial genome (BLASTN, E-value < 0.001) 75 

Annotation of KEGG modules 76 

The catalog of the non-redundant genes was functionally annotated to KEGG database 77 

(release 94.0) by KofamKOALA (version 1.3.0).7 8 The produced KEGG Orthologies 78 

(KOs) were mapped to the KEGG modules annotation downloaded on August 1, 2020 79 

from the KEGG BRITE database. KOs present in at least 4 samples were used for the 80 

following analysis. The KO abundance profile was calculated by summing the 81 
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abundances of genes that were annotated to each KO. 82 

Clustering of co-abundant metabolites 83 

Co-abundant metabolites in serum or synovial fluid were identified using the R package 84 

WGCNA9. As recommended by Pedersen et al.,4 a signed network and biweighted mid-85 

correlation were used for clustering with the soft threshold β = 8 for both serum and 86 

synovial fluid metabolites. The minimum cluster size was set as 3. Similar clusters were 87 

subsequently merged if the biweight mid-correlation between the cluster’s eigen 88 

vectors exceeded 0.8 for both serum and synovial fluid metabolites. The kIN of a 89 

metabolite was calculated by summing connectivity with all other metabolites in the 90 

given metabolite cluster. The kME was determined by the bicor-correlation between 91 

the metabolite profile and module eigenvector. Both kIN and kME were used to 92 

measure the intramodular hub-metabolite status. 93 

Cross-domain association analyses 94 

The clinical phenotypes, including types of arthritis (Healthy = 0, OA = 1, RA = 2) and 95 

the levels of pro-inflammatory cytokines TNF-α and IL-6, were used in the association 96 

analysis. TNF-α and IL-6 were selected based on their potentials to act as the 97 

therapeutic targets for RA treatment.10 11 The associations between clinical phenotypes 98 

and KEGG modules/metabolites clusters were determined through evaluating if the 99 

Spearman correlations of the phenotype with the abundances of KOs/metabolites in the 100 

given KEGG module/metabolite clusters were significantly higher or lower (Mann–101 

Whitney U-test FDR < 0.1) than with the abundances of all other KOs/metabolites. The 102 

phenotypes adjusted by age and gender were also tested. Moreover, the union set of the 103 

significant associations between KEGG modules and phenotypes/phenotypes adjusted 104 

by age and gender, and the intersect set of the significant associations between 105 

metabolites clusters and phenotypes/phenotypes adjusted by age and gender, were used 106 

for the following association analysis. The associations between metabolite clusters and 107 
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KEGG modules were determined through evaluating if the Spearman correlations of 108 

the eigen vectors of the metabolite clusters with the abundances of KOs in the given 109 

KEGG module were significantly higher or lower (Mann–Whitney U-test FDR < 0.1) 110 

than with the abundances of all other KOs/metabolites. 111 

Leave-one-out analysis 112 

Leave-one-out analysis was used to identify the specific MGS driving the observed 113 

associations between KEGG module M00550 and the clinical phenotypes, including 114 

the types of arthritis or the levels of pro-inflammatory cytokines TNF-α and IL-6. The 115 

calculation of the KO abundance was iterated excluding the genes from a different MGS, 116 

in each iteration. The effect of a given MGS on a specified association was defined as 117 

the change in median Spearman correlation coefficient between KOs and clinical 118 

phenotypes when genes from the respective MGS were left out, as previously 119 

described.4 12 120 

Taxonomic identity of differentially present microbes across conditions 121 

MetaPhlAn213 was used to generate species profiles. Species that were present in less 122 

than 10% samples were excluded. Supplementary Figure 1 displays the union set of the 123 

species (n=15) with significantly different abundances (Mann–Whitney U-test FDR < 124 

0.05) between the healthy and RA groups or between the healthy and OA groups. 125 

 126 
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 127 

Supplementary figure 1 Taxonomic identity of differentially present microbes across 128 

conditions. Each row represents a species with significantly different abundances 129 

(Mann–Whitney U-test FDR < 0.05) between the healthy and RA groups or between 130 

the healthy and OA groups. Each column represents a sample from one of the groups 131 

including the healthy, RAP1, RAP2, RAP3, RAP4, and OA groups. Color of each 132 

heatmap unit represents the scaled abundance of a certain species in a specific sample. 133 

Species are colored for significantly elevation (red) or depletion (green) in the arthritis 134 

groups, in comparison with the healthy groups. 135 

Data accession 136 

Whole-genome shot-gun sequencing data are available in the Genome Sequence 137 

Archive (GSA) section of National Genomics Data Center (project accession number 138 

CRA004348) at https://bigd.big.ac.cn/gsa/browse/CRA004348. 139 
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