
Supplementary methods 
 
ASD cohort 
A total of 773 participants with clinically diagnosed ASD were recruited (aged between 

16 months and 19 years) (online supplemental tables S1 and S2). ASD was diagnosed 

based on the Diagnostic and Statistical Manual of Mental Disorders Fifth Edition (DSM-

V) criteria by two or three psychiatrists in a face-to-face observation and interviewing 

the guardian(s). In the case of children ˂ 2 years of age, the Childhood Autism Rating 

Scale (CARS) and Gesell Developmental Schedules (GDS) schedules were 

conducted. For children ˃  2 years of age, the Autism Diagnostic Observation Schedule 

(ADOS), Autism Diagnostic Interview-Revised (ADI), or ADOS+ADI were used. Most 

participant diagnoses were confirmed with ADI-R (197/773), ADOS (354/773), or both 

(ADOS + ADI, 14/773), natively or locally. All participants will be reassessed in our 

outpatient or ward and obtained continuous clinical observations based on diagnostic 

criteria in the follow-up clinical intervention. Given the economic acceptability, 

convenience, and consistency in clinical practice, the severity of ASD was scored by 

accumulating the severity scores of clinical manifestations by psychiatrists. The 

patients’ clinical manifestations were clinically evaluated as mild (score 1), moderate 

(score 2), and severe (score 3) according to DSM-IV and DSM-V1; the online 

supplemental table S3 presents the detailed clinical evaluation standard. 
 
Control cohort  
A total of 429 neurotypical (NT) children (aged between 11 months and 15 years) and 

20 unrelated healthy adults (aged 16–24 years) were recruited (online supplemental 

tables S1 and S2). All healthy participants were from schools or companies that 

cooperated with our hospital for routine examinations. The 429 relatively young 

participants were mainly from the provinces of Hunan, Shandong, Zhejiang, Shanghai, 

and Beijing (online supplemental table S4) and were employed in the prospective, 

multiregional, and observational cohort study. The metadata used in this study are 

detailed in online supplemental table S1. For the information registration, each sample 

was scored as 1 (yes) or 0 (no) for each factor. Comorbidities, such as gastrointestinal 

(GI) problems, sleep complaints, and immune abnormalities, indicated the body 

conditions during the past two weeks before sampling. The summaries of age, 

demographic, clinical, and district characteristics are provided in online supplemental 

tables S2 and S4. No participant took any drug, such as antibiotics, opioids, metformin 

and statins, or dietary supplements, such as probiotics or prebiotics, which have been 

proven to impact gut microbiota, in the month before sampling. The use of antibiotics in 
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the three months prior to sampling was recorded in detail (online supplemental table 

S1). 

 
Validation cohort 
Full age brackets involving the appended cohort were conducted as validation cohort 1, 

which was recruited by our outpatient department from 2019-2021. This cohort included 

73 subjects with ASD and 32 age-matched NT subjects (online supplemental tables S1 

and S2).  

 

The unrelated cohort reported by Dan et al. 20202 was utilized as validation cohort 2 

and included 143 subjects with a clinical diagnosis of ASD (average age, 4.937 ± 0.155) 

and 143 age- and sex-matched NT individuals (average age, 5.189 ± 0.170) in China. 

 

The unrelated cohort reported by Cao et al. 20213 was employed as validation cohort 3 

and included 45 subjects with ASD (average age 6.80 ± 3.79) and 41 NT subjects 

(average age 5.16 ± 0.99) in China. 

 
Stool sample collection and DNA extraction 

All of the stool samples from participants were collected by themselves or their trained 

guardians at home/outpatient/ward within 3 minutes after defecation. After sampling, 

the container was labeled and transferred (<20 °C) to GUHE Laboratories (Hangzhou, 

China) within 3 days and stored at -80 °C until further processing. Stool samples were 

excluded if any organic changes were detected. Total bacterial genomic DNA was 

extracted using the GHFDE100 DNA isolation kit (Zhejiang Hangzhou Equipment 

Preparation: 20190952) in accordance with the manufacturer’s instructions. 

Incidentally, the genomic extraction method employed by the kit has obtained a 

Chinese national invention patent (NO: ZL201511009389.7). The quantity and quality 

of the extracted DNA were measured using NanoDrop ND-1000 spectrophotometer 

(Thermo Fisher Scientific, USA) and agarose gel electrophoresis, respectively. 

 
16S rRNA gene sequencing 
For each sample, we amplified variable V4 regions of the 16S rRNA gene using the 

forward primer 515F (5’-GTGCCAGCMGCCGCGGTAA-3’) and the reverse primer 

806R (5’-GGACTACHVGGGTWTCTAAT-3’). The PCR components contained 25 μl of 

Phusion High-Fidelity PCR Master Mix, 3 μl (10 uM) of each Forward and Reverse 

primer, 10 μl of DNA Template, 3μl of DMSO, and 6 μl of ddH2O. The following cycling 

conditions were used: initial denaturation at 98 °C for 30s followed by 25 cycles of 
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denaturation at 98 °C for 15 s, annealing at 58 °C for 15 s, and extension at 72°C for 

15 s and a final extension of 1 min at 72°C. PCR amplicons were purified with 

Agencourt AMPure XP Beads (Beckman Coulter, Indianapolis, IN) and quantified using 

the PicoGreen dsDNA Assay Kit (Invitrogen, Carlsbad, CA, USA). 

 

Bioinformatics and statistical analysis 
Briefly, raw sequences with exactly matched barcodes were assigned to their unique 

corresponding samples and identified as valid sequences. Inferior sequences were 

filtered out according to the following criteria: (i) sequences with <150 bp length or <20 

average Phred score, (ii) sequences that contained ambiguous bases or >8 bp 

mononucleotide repeats4 5 and the average of clean reads from each sample was 

126340. Qualified paired-end reads were blasted, dereplicated (--derep_fulllength), 

clustered (--cluster_unoise), and chimera detected (--uchime3_denovo) using 

VSEARCH (V2.4.4)6 against the SILVA138 database7 followed by assembly into 

operational taxonomic units (OTUs) with sequence similarity ≥97% using the 

Quantitative Insights Into Microbial Ecology (QIIME2, v2020.6) pipeline. OTUs 

containing ˂0.001% of the total sequences across all samples were discarded. To 

minimize the difference in sequencing depth across samples, an average, rounded 

rarefied OTU table was generated by averaging 100 evenly resampled OTU subsets 

under 90% of the minimum sequencing depth for further analysis. OTU-level alpha 

diversity, such as the Chao1, richness, abundance-based coverage estimator, 

Shannon, and Simpson index of each sample were calculated using the OTU table in 

QIIME. Beta diversity analysis was performed using UniFrac distance metrics8 9 and 

visualized via principal component analysis (PCA) based on the OTU-level 

compositional profiles10. The significance in the differentiation of microbiota structure 

among groups was assessed by permutational multivariate analysis of variance 

(PERMANOVA) using the R package “vegan” For taxa, the relative abundance 

changes between groups were statistically analyzed using the Kruskal-Wallis test from 

the R stats package at the phylum, class, order, family, genus, and species levels. 

Based on the normalized OTU tables, functional modules predicted by PICRUSt2.3 

were used to predict metagenomic functions (MetaCYC) 11. Human gut-brain modules 

(GBMs) were profiled using the Omixer-RPM version 1.0 

(https://github.com/raeslab/omixer-rpm) with default parameters. Co-occurrence 

analysis was performed by calculating Spearman’s rank correlations between microbial 

taxa/function and clinical phenotype. The Veillonella correlation  network was 

performed using the Pearson correlation. Correlations with p < 0.05, were validated as 

pre-significant co-features. Microbial taxa pre-co-feature are visualized in Figure 4B. 
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For each functional pre-co-feature, we calculated the perturbed score, defined as 𝑆 𝑙𝑜𝑔10 𝑃 ∗ |𝑅𝐻𝑂| 
where p-value was the paired t-test between functional ‘pre-co-feature’ and clinical 

phenotype. Values of the perturbed score of each functional ‘pre-co-feature’ (mainly to 

METACYC) at different age brackets were written into the same box and then averaged 

as 

𝑅𝑠 ∑ log 𝑃 ∗ |𝑅𝐻𝑂|𝑇  

All functional pre-co-features were ranked by Rsscore for further analysis. The 

correlation network was drawn using Cytoscape according to the perturbed score, and 

the circos plot was plotted using the R package. 

The multivariate linear modeling system was used to calculate the association between 

selected microbial features and factors for the fixed effects of potentially confounding 

covariates (other factors from metadata). Associations from MaAslin212 13 generally 

represented the causal relationship between the abundance change of microbial 

features and metadata (usually the categorical data). Significance values across all 

associations were then adjusted using the Benjamini–Hochberg False Discovery Rate 

(FDR) method. 

EnvFit14 15 was performed using the ‘vegan’ R package. The covariates and 

significance of each factor were determined using EnvFit based on NMDS with Bray-

Curtis dissimilarity. A total of 33 factors were included in the effect size calculation 

(Online Supplemental Table S6). The significance value of each factor was determined 

based on 10,000 permutations and adjusted using FDR adjustment (Benjamini–

Hochberg procedure). 

Random forest analysis was performed to discriminate samples from different groups 

using the R package “randomForest” with 1,000 trees, and all default settings turned 

off 16 17. The generalization error was estimated using 10-fold cross-validation. The 

expected “baseline” error was also included, which was obtained using a classifier that 

simply predicts the most common category label. The SHAP (SHapley Additive 

exPlanations) value was regarded as the sum of all quantitative impacts of potential 

influencing factors on the feature. The feature with equal importance in the ASD or NT 

group typically indicated that individual factors induced the feature with the lowest bias.  

 
Deep neural network for microbiota age quantification.  

Feature selection models were trained using a full list of OTU-level features, which 
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included 7,573 microbial taxa. Training and validation sets were separated to contain 

90% and 10% of the profiles in all cases. The regressors were built using taxonomic 

profiles derived from individual samples (sample-based models). The model was 

trained as a regressor using five-fold cross-validation. After completing the grid search 

for various model configurations, the best-performing model was selected based on the 

maximal R2 score. The model contained three hidden layers with 512 nodes in each, 

with a PReLU activation function, Adam optimizer, dropout fraction of 0.5, and a learning 

rate of 0.001. To verify the importance of features derived from the sample-based DNN 

model, gradient boosting was used, as implemented in the XGBoost Python library. The 

best-performing XGBoost model was trained using the following parameters: 

linear_nthread = 35, max_depth = 6, max_delta_step = 2, lambda= 0, gamma = 0.1, 

eta=0.1, and alpha = 0.5. The performance of the XGBoost models was evaluated using 

the MAE. 

 
Microbial relationship alteration analysis 
The PM score was used to quantify the relationship alteration to remove the potential 

impact of changes on microbial abundance. A threshold FDR q-value < 0.05, p-value 

< 0.05, PM score > 0.25, and taxa detection rate > 0.25 were used to filter significant 

relationship alterations.  

 

In addition to the PM2RA analysis, changes in the occurrence network were calculated. 

Pearson’s correlation was used to describe the relationships between taxa and build 

the occurrence network. After obtaining the two occurrence networks for NT and ASD 

cohorts, Pearson correlation differences were calculated pairwise. Pearson correlation 

alterations with difference > 0.7 or difference < -0.7 and taxa detection rate > 0.25 were 

used to build the final altered occurrence network. 

 
Identification of microbial relationship alteration with increasing ASD score 
The clinical symptoms of children with ASD were clustered into four groups: group 1 

with ASD scores 1-3 (included), group 2 with ASD scores 4-5 (included), group 3 with 

ASD score 6, and group 4 with ASD scores 7-9 (included). The paired microbial 

relationship alteration between these four groups and the NT cohort was quantified 

using PM2RA. We performed linear regressions on each microbial relationship to 

identify changes in the microbial relationship with increasing ASD scores. Several 

thresholds were used to filter the expanded relationship alterations. The linear 

regression R-square should be ˃0.7, and the regression coefficients should be ˃ 0.05. 

Compared with NT, the PM score in groups 3 and 4 should be ˃ 0.2. The corresponding 
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detection rate of taxa should be ˃0.25. The information regarding the 54 identified 

microbial relationship alterations is shown in online supplemental table S11. 
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