
Supplementary Methods 

Alternate promoter utilization burden algorithm 

Alternate promoter utilization burden was calculated using proActiv, an algorithm that 

estimates promoter activity from short-read RNA-Seq data by mapping and 

quantifying first intron junctions of the genome. This method has been described 

extensively and is available as an R package [1]. First, FASTQ files were aligned to 

GENCODE v19. The Pan-TCGA RNA-Seq was aligned using TopHat2 (v2.0.12), 

while all remaining RNA-Seq cohorts aligned using STAR v2.6.1. The TCGA STAD 

cohort was aligned using both TopHat2 v2.0.12 and STAR v2.6.1. Splice-junction 

files were extracted for input into proActiv v0.1.0. Using the 

calculatePromoterReadCounts function from the proActiv package, overlapping first 

exons of each transcription start site (TSS) were combined to obtain a set of 113,076 

promoters across the entire genome. Each promoter was quantified using junction 

reads aligning into the first introns of the constituting transcripts. Genomic regions 

were selected using data from our previous H3K4me3 ChIPSeq study on epigenetic 

promoter alterations that identified specific gain-of-expression (“gain promoters”) and 

loss-of-expression (“loss promoters)” loci which were associated with immune-editing 

in STAD [2, 3]. Of the 113,076 promoters in the genome, we identified promoters 

which mapped to these specified regions. We selected 4,519 promoters (3,152 gain 

promoters and 1,367 loss promoters) which were used to measure alternate 

promoter utilization burden. Read counts were normalized by library size per sample. 

Promoter counts were transformed based on weights derived from TCGA gastric 

cancer samples (STAD). Median normalized promoter read count values of gained 

promoters were multiplied by 4, and loss promoters were divided by 4 to establish 

weights. Transformed promoter read counts were assigned a point if the value was ≥ 

1. The sum of the gain and loss promoter points was assigned the alternate 

promoter utilization burden (APB). Correlation between median promoter read 

counts between STAR and TopHat2 of the TCGA STAD samples was high 

(Spearman R = 0.98, p < 0.0001). Samples were classified into groups: Those in the 

top quartile of APB were classified as APBhigh, in the lowest quartile as APBlow, while 

the rest of the samples were classified as APBint (Fig 1A). APB across 

batches/cohorts were normalized prior to categorizing into groups.  
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Pan-cancer TCGA analysis 

Gene expression data and clinical data from the PanCanAtlas were downloaded 

from Firebrowse [4]. Illumina HiSeq RNA-SeqV2 RSEM normalized gene values 

were used for correlations of CD8A, GZMA and PRF1 and other genes. All tumor 

types within the database were included except for tumors of hematological or 

immune origin (lymphoma, leukemia and thymic carcinoma) as correlation with 

immune-related outcomes from bulk RNA-Seq data of these tumor types would not 

be meaningful. “Colorectal cancer” included colon cancer (COAD) and rectal cancer 

(READ), “kidney cancer” included kidney chromophobe (KICH), kidney renal cell 

(KIRC) and kidney renal papillary cell carcinoma (KIRP), and “glioma” included 

glioblastoma multiforme (GBM) and low-grade glioma (LGG). For uterine corpus 

endometrial carcinoma (UCEC), Illumina Genome Analyzer RNA-Seq V2 RSEM 

normalized gene expression values from Firebrowse were used, as the dataset was 

larger compared to the Illumina HiSeq RNA-SeqV2 RSEM dataset (381 vs. 176 

samples).  

Immune correlates 

Transcriptomic gene expression Level 3 RSEM-normalized RNASeqV2 data was 

extracted from the Broad GDAC Firebrowse [4]. STAD TCGA subtypes were 

downloaded from cBioPortal, Stomach Adenocarcinoma (TCGA PanCancer Atlas), 

Clinical Data. Differential gene expression analysis in the Pan-Cancer TCGA 

analysis was performed with p value adjustments using the Bonferroni method, and -

log10(qval)>2 were considered significant. The Immunology Database and Analysis 

Portal (ImmPort) system gene list of 4,627 immunologically related genes was 

extracted from InnateDB [5]. The list was generated through initial automatic 

searches of EntrezGene and Gene Ontology using immunology-related keywords 

and then manually curated by immunology experts. Microsatellite instability (MSI-H) 

status of samples were extracted from Cortes-Ciriano et al [6]. Microsatellite status 

was derived by combining MSI status from the TCGA consortium, which was 

performed using a panel of four mononucleotide repeats and three dinucleotide 

repeats and whole-exome analysis of 7089 samples, using the 0.95 confidence calls. 

Immune subtypes, other immune signatures and tumor mutational burden (TMB), 

disease free survival (DFS) and overall survival (OS) including censorship data were 

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) Gut

 doi: 10.1136/gutjnl-2021-324420–12.:10 2022;Gut, et al. Sundar R



extracted from the Pan-Cancer immune landscape analysis by Thorsson et al [7]. To 

avoid confounding at the pan-cancer level where outcomes may be influenced by 

intrinsic tissue- or site-specific properties, tumor-type specific analyses were 

performed for most correlations. 

Tumor purity, intratumor heterogeneity, and immune cell fraction data 

The consensus tumor purity estimates of the TCGA STAD samples were 

downloaded from the supplementary data of Ghoshdastider et al [8]. Briefly, the 

consensus tumor purity was caluculated as the mean of normalized purity values 

obtained from 3 genome-based methods (AbsCN-Seq, PurBayes, and ASCAT) and 

1 transcriptome-based method (ESTIMATE). The intratumor heterogeneity scores 

(from clonality calls of ABSOLUTE) and immune cell fraction estimates (from 

CIBERSORT) were downloaded from the supplementary data of Thorsson et al [7]. 

Single-Cell RNA-Seq of Gastric Cancer 

Sample cohort description 

Patients diagnosed with gastric adenocarcinoma and planned for surgical resection 

at the National University Hospital, Singapore were enrolled after obtaining written 

informed consent. The study was approved by the local ethics board (DSRB Ref No: 

2005/00440). From the fresh resected specimens, four tumor biopsies taken from 

different and representative quadrants of the tumor were processed for the scRNA-

Seq experiment. Additional tumor tissue was also processed for whole-exome 

sequencing (WES) and bulk whole transcriptome sequencing (bulk RNA-Seq). 

Histopathological, staging and clinical data from the patients were also available for 

correlation.  

scRNA-Seq Library preparation 

Enriched 5’ gene expression libraries were constructed from single cells dissociated 

from tumor samples. Gel Beads in Emulsion (GEM)s were generated by combining 

barcoded single cell 5’ gel beads, master mix with cells, and partitioning oil on 

Chromium Chip A. Reverse transcription occurred within the generated GEM after 

which the GEMs were dissolved. The 10x barcoded, full-length cDNA was amplified 

via polymerase chain reaction (PCR), generating sufficient material to construct 

multiple libraries from the same cells. The enriched libraries were later enzymatically 
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digested, size selected, and adaptor ligated to be sequenced. 5’gene expression 

libraries were made similarly from amplified CDNA by enzymatic digestion, size 

selection and adaptor ligation. Libraries were subsequently sequenced on a Illumina 

Hiseq sequencer.  

Single-cell gene expression quantification and determination of the major cell types: 

Unique molecular identified (UMI) count matrix were first generated for each sample 

by passing the raw data in the cell ranger software. The count matrix was later used 

to generate a Seurat object which is used for clustering analysis [9, 10]. Quality 

control (QC) was done by filtering the cells that had unique feature counts over 2,500 

or less than 200 and filtering the cells that had >5% mitochondrial counts. After 

removing the unwanted cells, data normalization followed by feature selection, data 

scaling and linear dimensional reduction was performed. Highly variable genes were 

identified using the ‘FindVariableGenes’ function. The first 20 principal components 

(PCs) and a resolution of 0.8 were used for clustering using ‘FindClusters’. UMap 

was used for two-dimensional representation of first 20 PCs with ‘RunUMAP’. 

Differential gene expression for identifying markers of a cluster relative to all other 

clusters or compared to a specific cluster was determined using the ‘FindAllMarkers’ 

or ‘FindMarkers’ functions respectively.  Marker genes were compared for each 

cluster to literature-based markers of cell lineages to assign a cell lineage per 

cluster. Cell clusters were labelled based on curated and described cell markers [11].  

Humanized mouse model 

Mice and animal care 

NOD-scid Il2rγnull (NSG) mice were purchased from the Jackson Laboratory (stock 

number 005557). All mice were bred and kept under pathogen-free conditions in 

Biological Resource Centre, Agency for Science, Technology and Research, 

Singapore (A*STAR) on controlled 12-hour light-dark cycle. All experiments and 

procedures were approved by the Institutional Animal Care and Use Committee 

(IACUC; IACUC# 191440) of A*STAR in accordance with the guidelines of Agri-Food 

and Veterinary Authority and the National Advisory Committee for Laboratory Animal 

Research of Singapore. 

Generation of humanized-mice 
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One to three day-old NSG pups were sub-lethally irradiated at 1 Gy and engrafted 

with 1 x 105 human CD34+ cordblood cells (HLA-A24:02; Stemcell Technologies) via 

intrahepatic injection. Mice were submandibularly bled at 10 weeks post-engraftment 

to determine the levels of human immune reconstitution via flow cytometry. Mice with 

more than 10% human immune cell reconstitution (calculated based on the 

proportion of human CD45 relative to the sum of human and mouse CD45) were 

included in the study. 

Gastric cancer cell-line selection 

As the humanized-mouse models were generated from HLA-A24:02 cord-blood 

cells, gastric cancer cell-lines with HLA-A24:02 subtype in at least one allele were 

selected. RNA-Seq and WES was performed on 30 gastric cancer cell lines to infer 

APB and HLA subtype. Cell lines with HLA-A24:02 subtype for at least one allele 

were selected for testing in the humanized mouse model experiment. To confirm 

ability of cell-lines to form tumors in immunodeficient mice first, 2 x 106 of cells were 

subcutaneously injected into the shaved right flank of one immune-deficient and 

monitored for two weeks. Cell-lines of HLA-A24:02 subtype which demonstrated 

appreciable growth were selected for the study. Cell-lines were assigned APB 

groups: APBhigh, APBint and APBlow. In total 5 cell lines were selected for the 

experiment (two APBhigh (SNU1750 and GSU), one APBint (YCC21) and two APBlow 

cell lines (NCC 59 and SNU16)).  

Study design 

For each cell-line, 5 humanized-mice and 5 NSG mice were injected with the tumor 

cells and observed for one month. Mice were sacrificed at the end of one month, 

necropsies performed, and tumors harvested for further analysis. Parameters that 

were monitored included differential growth rate (tumor volume) between humanized 

and NSG mice, tumor size at end of the one month and histopathological analysis for 

immune cell infiltration, including immunohistochemistry.    

Tumorigenesis in mice  

For each cell-line, 2 x 106 of cells was resuspended in 50µl of sterile saline (NaCl 

0.9%; Braun) and subcutaneously injected into the shaved right flank of each NSG 

and humanized-mouse. The tumor size was monitored twice weekly and the length 
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and width of tumor was measured using calipers. The tumor volume was calculated 

using the formula: tumor volume = (length x width2) x 0.5. Tumor initiation was 

defined as detection of a tumor of at least 5 mm3. 

Immunohistochemistry (IHC) and Hematoxylin and Eosin (H&E) staining 

IHC and H&E staining was performed on the FFPE tissue samples as previously 

described[12, 13, 14, 15, 16]. Tissue sections (4 µm thick) were labelled with 

antibodies targeting CD3 and CD8, as listed in the table below. Appropriate positive 

and negative controls were included. To score antibody-labelled sections, images 

were captured using an IntelliSite Ultra-Fast Scanner (Philips, Eindhoven, 

Netherlands). The percentage of cells displaying unequivocal staining of any 

intensity for CD3 or CD8 were determined by a pathologist blinded to 

clinicopathological and survival information. Tumor infiltrating lymphocytes (TILs) 

expressing CD3 or CD8 were identified within the intra-tumoral area defined as 

lymphocytes within cancer cell nests and in direct contact with tumour cells [16, 17, 

18]. Quantification of TILs was determined by the percentage of the intra-tumoral 

areas occupied by the respective TIL population [16, 17, 18]. 

Antibody Source Clone Labelling Pattern 

CD3 Dako DKO.A045201 polyclonal cytoplasm 

CD8 Leica CD8-4B11-L-CE 4B11 cytoplasm 

 

Bulk RNA-Seq of mouse tumors 

RNA-Seq was performed from tumors harvested at the end of mouse experiment 

using standard pipelines previously described [19]. CIBERSORTx was used to 

estimate cellular proportions [20]. For reference signature gene matrices, the NSCLC 

PBMCs scRNAseq dataset provided with the CIBERSORTx suite were used.  

Immunotherapy treated clinical cohorts 

In a multi-centre, industry-academic collaborative effort, a cohort of immunotherapy 

treated samples were collected, to assess APB. A majority of the samples were from 

various ICI clinical trials being conducted by the respective groups. Academic 
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centres that contributed samples to this study include Samsung Medical Center, 

South Korea; Fondazione IRCCS Istituto Nazionale dei Tumori of Milan, Italy; Yonsei 

Cancer Center, South Korea; National University Cancer Institute, Singapore and 

National Cancer Center, Singapore. Industry collaborators included 

Roche/Genentech. For samples that had RNA-Seq performed by the respective 

centres, bioinformatic FASTQ files, along with correlative clinical data were 

transferred to Singapore for analysis. APB was quantified from RNA-Seq data using 

the method described earlier. For samples where only formalin-fixed paraffin 

embedded (FFPE) archival tissue were available, tissue blocks, or slides were 

shipped to Singapore. A custom-designed NanoString panel was performed on these 

FFPE samples. The contributing site, tumor-type, ICI treatment and type of 

transcriptomic analysis performed (RNA-Seq vs. NanoString) are listed in 

Supplementary Table 5. All patients were treated with ICI in the metastatic, second-

line or beyond setting. A subgroup of the gastric cancer samples analysed in this 

study was reported as a preliminary analysis previously[3]. The chemotherapy cohort 

used in the analysis was from the “3G” multi-center international clinical trial [21]. 

Patients were assigned to one of two chemotherapy treatments: SOX (S-1 (an oral 

5-fluoropyramidine pro-drug) and oxaliplatin) or SP (S-1 and cisplatin) based on a 

pre-determined genomic signature.  

PDL1 Immunohistochemistry 

PDL1 immunhistochemisty was performed using the Dako PD-L1 IHC 22C3 

pharmDx kit (Agilent Technologies). PD-L1 protein expression was determined using 

CPS, which was the number of PD-L1 staining cells (tumour cells, lymphocytes, 

macrophages) divided by the total number of viable tumour cells, multiplied by 100.  

MSI status 

Tumour tissue MSI status was determined by both IHC for MLH1 and MSH2 and 

PCR analysis of 5 markers with mononucleotide repeats. 

EBV status subtypes  

EBV status was determined by EBV-encoded small RNA (EBER) in situ 

hybridization.   

TCGA subtype definition 
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Gastric cancer subtypes defined by TCGA was based on DNA genomic alterations. 

These groups included EBV, MSI-H, CIN and genome stable tumors, which lack CIN 

and are heavily enriched in the diffuse histologic subtype. As a proxy for CIN, we 

stratified EBV negative, MSS tumors into CIN and genome stable based on 

their TP53 status as described previously [22]. Mutational signature analysis was 

performed using the deconstructSigs package (v1.6.0) in R. 

 

NanoString analysis 

The NanoString nCounter platform has been developed for gene and transcript 

expression analysis for use with FFPE-derived samples [23]. We have previously 

demonstrated good correlation between APB in RNA-Seq and NanoString [2, 3]. 

APB quantification utilizes 4,519 promoters identified in RNA-Seq for calculation. 

The NanoString nCounter platform allows for measurement of up to maximum of 800 

probes or transcripts. From the 4,519 promoters used to calculate the APB 

algorithm, we identified the top 500 promoters from the pan-TCGA analysis to design 

alternate promoter probes. These probes were designed to predominantly bind to the 

unique first exon junctions, allowing for identifying and differentiating between 

alternate promoter transcripts. The probe design aimed to simulate the proActiv 

algorithm in identifying gain and loss promoter transcripts [1]. After running in silico 

QC on the full set of probes to look for potential probe-probe homology that might 

cause assay errors, a total of 437 alternate promoter probes (262 gain promoters 

and 175 lost promoters) were selected. Several immune gene related genes and 

other cancer related genes and exploratory probes were also included in the final 

panel design to test correlates. APB was calculated from the NanoString panel using 

the same parameters as RNA-Seq. Promoter counts were transformed based on 

weights established from median normalized promoter read count values (of the 

NanoString cohort). Median values of gain promoters were multiplied by 4, and loss 

promoters were divided by 4 to establish weights in the gastric cancer NanoString 

cohort. Transformed promoter read counts were assigned a point if the value was ≥ 

1. The sum of the gain and lost promoter points was assigned the alternate promoter 

utilization burden (APB). Samples were classified into APB groups: Those in the top 

quartile of APB were classified as APBhigh, in the lowest quartile as APBlow, while the 
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rest of the samples were classified as APBint. The first NanoString panel was tested 

on 35 gastrointestinal tumors. Based on the training and probe binding quality from 

the first panel, a second panel using 169 probes (72 gain and 97 loss), was tested 

on a second cohort of gastric cancer samples (n = 54).  APB was calculated using 

the same formula. 
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