Skip to main content

Plaques, Tangles, and Memory Loss in Mouse Models of Neurodegeneration

Abstract

Within the past decade, our understanding of the pathogenic mechanisms in Alzheimer’s disease (AD) has dramatically advanced because of the development of transgenic mouse models that recapitulate the key pathological and behavioral phenotypes of the disease. These mouse models have allowed investigators to test detailed questions about how pathology develops and to evaluate potential therapeutic approaches that could slow down the development of this disease. In this review, we discuss the status of transgenic mouse models and review the complex relationship between pathology and behavior in the development of neuropathological syndromes in AD.

This is a preview of subscription content,access via your institution.

Fig. 1
Fig. 2

References

  • Allen B, Ingram E, Takao M, Smith MJ, Jakes R, Virdee K, Yoshida H, Holzer M, Craxton M, Emson PC, Atzori C, Migheli A, Crowther RA, Ghetti B, Spillantini MG, Goedert M (2002) Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. J Neurosci 22:9340–9351

    PubMedCASGoogle Scholar

  • Ambree O, Touma C, Gortz N, Keyvani K, Paulus W, Palme R, and Sachser N (2005) Activity changes and marked stereotypic behavior precede Abeta pathology in TgCRND8 Alzheimer mice.Neurobiol Aging

  • Ammassari-Teule M, Middei S, Passino E, Restivo L (2002) Enhanced procedural learning following beta-amyloid protein (1–42) infusion in the rat. Neuroreport 13:1679–1682

    PubMedCASGoogle Scholar

  • Andorfer C, Acker CM , Kress Y, Hof PR, Duff K, Davies P (2005) Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J Neurosci 25:5446–5454

    PubMedCASGoogle Scholar

  • Andorfer C, Kress Y, Espinoza M, de Silva R, Tucker KL, Barde YA, Duff K, Davies P (2003) Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms. J Neurochem 86:582–590

    PubMedCASGoogle Scholar

  • Andra K, Abramowski D, Duke M, Probst A, Wiederhold KH, Burki K, Goedert M, Sommer B, Staufenbiel M (1996) Expression of APP in transgenic mice: a comparison of neuron-specific promoters. Neurobiol Aging 17:183–190

    PubMedCASGoogle Scholar

  • Arendash GW, King DL, Gordon MN, Morgan D, Hatcher JM, Hope CE, Diamond DM (2001a) Progressive, age-related behavioral impairments in transgenic mice carrying both mutant amyloid precursor protein and presenilin-1 transgenes. Brain Res 891:42–53

    CASGoogle Scholar

  • Arendash GW, Gordon MN, Diamond DM, Austin LA, Hatcher JM, Jantzen P, DiCarlo G, Wilcock D, Morgan D (2001b) Behavioral assessment of Alzheimer’s transgenic mice following long-term Abeta vaccination: task specificity and correlations between Abeta deposition and spatial memory. DNA Cell Biol 20:737–744

    CASGoogle Scholar

  • Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW (1991) The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cerebr Cortex 1:103–116

    CASGoogle Scholar

  • Arroyo-Anllo EM, Gil R, Rosier M, Barraquer-Bordas L (1999) Procedural learning and neurological disorders. Rev Neurol 29:1246–1267

    PubMedCASGoogle Scholar

  • Barnes CA, Rao G, McNaughton BL (1996) Functional integrity of NMDA-dependent LTP induction mechanisms across the lifespan of F-344 rats. Learn Mem 3:124–137

    PubMedCASGoogle Scholar

  • Barnes P, Hale G, Good M (2004) Intramaze and extramaze cue processing in adult APPSWE Tg2576 transgenic mice. Behav Neurosci 118:1184–1195

    PubMedGoogle Scholar

  • Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla FM (2005) Intraneuronal Abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron 45:675–688

    PubMedCASGoogle Scholar

  • Bizon J, Prescott S, and Nicolle MM (2006) Intact spatial learning in adult Tg2576 mice.Neurobiol Aging

  • Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    PubMedCASGoogle Scholar

  • Bohut MC, Soffié M, Poucet B (1989) Scopolamine affects the cognitive processes involved in selective object exploration more than locomotor activity. Psychobiology 17:409–417

    Google Scholar

  • Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T, Prada CM, Kim G, Seekins S, Yager D, Slunt HH, Wang R, Seeger M, Levey AI, Gandy SE, Copeland NG, Jenkins NA, Price DL, Younkin SG, Sisodia SS (1996) Familial Alzheimer’s disease-linked presenilin 1 variants elevate Abeta1–42/1–40 ratio in vitro and in vivo. Neuron 17:1005–1013

    PubMedCASGoogle Scholar

  • Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G, Silva AJ (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79:59–68

    PubMedCASGoogle Scholar

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 82:239–259

    CASGoogle Scholar

  • Brody DL, Holtzman DM (2006) Morris water maze search strategy analysis in PDAPP mice before and after experimental traumatic brain injury. Exp Neurol 197:330–340

    PubMedCASGoogle Scholar

  • Bures J, Bermudez-Rattoni F, Yanamoto T (1998) Conditioned taste aversion: memory of a special kind. Oxford University Press, Oxford

    Google Scholar

  • Buttini M, Masliah E, Barbour R, Grajeda H, Motter R, Johnson-Wood K, Khan K, Seubert P, Freedman S, Schenk D, Games D (2005) Beta-amyloid immunotherapy prevents synaptic degeneration in a mouse model of Alzheimer’s disease. J Neurosci 25:9096–9101

    PubMedCASGoogle Scholar

  • Calhoun ME, Wiederhold KH, Abramowski D, Phinney AL, Probst A, Sturchler-Pierrat C, Staufenbiel M, Sommer B, Jucker M (1998) Neuron loss in APP transgenic mice. Nature 395:755–756

    PubMedCASGoogle Scholar

  • Campion D, Flaman JM, Brice A, Hannequin D, Dubois B, Martin C, Moreau V, Charbonnier F, Didierjean O, Tardieu S (1995) Mutations of the presenilin I gene in families with early-onset Alzheimer’s disease. Hum Mol Genet 4:2373–2377

    PubMedCASGoogle Scholar

  • Carlesimo GA, Mauri M, Graceffa AM, Fadda L, Loasses A, Lorusso S, Caltagirone C (1998) Memory performances in young, elderly, and very old healthy individuals versus patients with Alzheimer’s disease: evidence for discontinuity between normal and pathological aging. J Clin Exp Neuropsychol 20:14–29

    PubMedCASGoogle Scholar

  • Chapman PF, White GL, Jones MW, Cooper-Blacketer D, Marshall VJ, Irizarry M, Younkin L, Good MA, Bliss TV, Hyman BT, Younkin SG, Hsiao KK (1999) Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat Neurosci 2:271–276

    PubMedCASGoogle Scholar

  • Chartier-Harlin MC, Crawford F, Hamandi K, Mullan M, Goate A, Hardy J, Backhovens H, Martin JJ, Broeckhoven CV (1991a) Screening for the beta-amyloid precursor protein mutation (APP717: Val—Ile) in extended pedigrees with early onset Alzheimer’s disease. Neurosci Lett 129:134–135

    CASGoogle Scholar

  • Chartier-Harlin MC, Crawford F, Houlden H, Warren A, Hughes D, Fidani L, Goate A, Rossor M, Roques P, Hardy J (1991b) Early-onset Alzheimer’s disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature 353:844–846

    CASGoogle Scholar

  • Chauhan NB, Siegel GJ, Lichtor T (2004) Effect of age on the duration and extent of amyloid plaque reduction and microglial activation after injection of anti-Abeta antibody into the third ventricle of TgCRND8 mice. J Neurosci Res 78:732–741

    PubMedCASGoogle Scholar

  • Chen GQ, Chen KS, Knox J, Inglis J, Bernard A, Martin SJ, Justice A, McConlogue L, Games D, Freedman SB, Morris RGM (2000) A learning deficit related to age and beta-amyloid plaques in a mouse model of Alzheimer’s disease. Nature 408:975–979

    PubMedCASGoogle Scholar

  • Cheng IH, Palop JJ, Esposito LA, Bien-Ly N, Yan F, Mucke L (2004) Aggressive amyloidosis in mice expressing human amyloid peptides with the Arctic mutation. Nat Med 10:1190–1192

    PubMedCASGoogle Scholar

  • Chishti MA, Yang DS, Janus C, Phinney AL, Horne P, Pearson J, Strome R, Zuker N, Loukides J, French J, Turner S, Lozza G, Grilli M, Kunicki S, Morissette C, Paquette J, Gervais F, Bergeron C, Fraser PE, Carlson GA, St George-Hyslop P, Westaway D (2001) Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J Biol Chem 276:21562–21570

    PubMedCASGoogle Scholar

  • Citron M, Westaway D, Xia W, Carlson G, Diehl T, Levesque G, Johnson-Wood K, Lee M, Seubert P, Davis A, Kholodenko D, Motter R, Sherrington R, Perry B, Yao H, Stome R, Lieberburg I, Rommens J, Kim S, Schenk D, Fraser P, St George-Hyslop P, Selkoe DJ (1997) Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid ß-protein in both transfected cells and transgenic mice. Nat Med 3:67–72

    PubMedCASGoogle Scholar

  • Clark LN, Poorkaj P, Wszolek Z, Geschwind DH, Nasreddine ZS, Miller B, Li D, Payami H, Awert F, Markopoulou K, Andreadis A, D’Souza I, Lee VM, Reed L, Trojanowski JQ, Zhukareva V, Bird T, Schellenberg G, Wilhelmsen KC (1998) Pathogenic implications of mutations in the tau gene in pallido-ponto-nigral degeneration and related neurodegenerative disorders linked to chromosome 17. Proc Natl Acad Sci USA 95:13103–13107

    PubMedCASGoogle Scholar

  • Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ, Ashe KH (2005) Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci 8:79–84

    PubMedCASGoogle Scholar

  • Collingridge GL, Kehl SJ, McLennan H (1983) Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol (Lond) 334:33–46

    CASGoogle Scholar

  • Corcoran KA, Lu Y, Turner RS, Maren S (2002) Overexpression of hAPPswe impairs rewarded alternation and contextual fear conditioning in a transgenic mouse model of Alzheimer’s disease. Learn Mem 9:243–252

    PubMedGoogle Scholar

  • Crawley JN, Paylor R (1997) A proposed test battery and constellation of specific behaviural paradigms to investigate the behavioural phenotypes of transgenic and knockout mice. Hormone Behav 31:197–211

    CASGoogle Scholar

  • Cruts M, Rademakers R (2006) Alzheimer disease and frontotemporal dementia mutation database.

  • Cummings JL (2004) Dementia with lewy bodies: molecular pathogenesis and implications for classification. J Geriatr Psychiatry Neurol 17:112–119

    PubMedGoogle Scholar

  • De Jonghe C, Zehr C, Yager D, Prada CM, Younkin S, Hendriks L, Van Broeckhoven C, Eckman CB (1998) Flemish and Dutch mutations in amyloid beta precursor protein have different effects on amyloid beta secretion. Neurobiol Dis 5:281–286

    PubMedGoogle Scholar

  • Del Vecchio RA, Gold LH, Novick SJ, Wong G, Hyde LA (2004) Increased seizure threshold and severity in young transgenic CRND8 mice. Neurosci Lett 367:164–167

    PubMedGoogle Scholar

  • Desgranges B, Eustache F, Rioux P, de La Sayette V, Lechevalier B (1996) Memory disorders in Alzheimer’s disease and the organization of human memory. Cortex 32:387–412

    PubMedCASGoogle Scholar

  • Deweer B, Pillon B, Michon A, Dubois B (1993) Mirror reading in Alzheimer’s disease: normal skill learning and acquisition of item-specific information. J Clin Exp Neuropsychol 15:789–804

    PubMedCASGoogle Scholar

  • Deweer B, Ergis AM, Fossati P, Pillon B, Boller F, Agid Y, Dubois B (1994) Explicit memory, procedural learning and lexical priming in Alzheimer’s disease. Cortex 30:113–126

    PubMedCASGoogle Scholar

  • Dineley KT, Xia X, Bui D, Sweatt JD, Zheng H (2002) Accelerated plaque accumulation, associative learning deficits, and up-regulation of alpha 7 nicotinic receptor protein in transgenic mice co-expressing mutant human presenilin 1 and amyloid precursor proteins. J Biol Chem 277:22768–22780

    PubMedCASGoogle Scholar

  • Dodart JC, Meziane H, Mathis C, Bales KR, Paul SM, Ungerer A (1999) Behavioral disturbances in transgenic mice overexpressing the V717F beta-amyloid precursor protein. Behavioral Neuroscience 113:982–990

    PubMedCASGoogle Scholar

  • Dodart JC, Mathis C, Saura J, Bales KR, Paul SM, Ungerer A (2000) Neuroanatomical abnormalities in behaviorally characterized APP(V717F) transgenic mice. Neurobiol Dis 7:71–85

    PubMedCASGoogle Scholar

  • Dodart JC, Bales KR, Gannon KS, Greene SJ, DeMattos RB, Mathis C, DeLong CA, Wu S, Wu X, Holtzman DM, Paul SM (2002) Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model. Nat Neurosci 5:452–457

    PubMedCASGoogle Scholar

  • Duff K, Eckman C, Zehr C, Yu X, Prada C-M, Perez-tur J, Hutton M, Buee L, Harigaya Y, Yager D, Morgan D, Gordon MN, Holcomb L, Refolo L, Zenk B, Hardy J, Younkin S (1996) Increased amyloid-ß42(43) in brains of mice expressing mutant presenilin 1. Nature 383:710–713

    PubMedCASGoogle Scholar

  • Eichenbaum H (1996) Learning from LTP: a comment on recent attempts to identify cellular and molecular mechanisms of memory. Learn Mem 3:61–73

    PubMedCASGoogle Scholar

  • Elgh E, Lindqvist Astot A, Fagerlund M, Eriksson S, Olsson T, Nasman B (2006) Cognitive dysfunction, hippocampal atrophy and glucocorticoid feedback in Alzheimer’s disease. Biol Psychiatry 59:155–161

    PubMedCASGoogle Scholar

  • Eslinger PJ, Damasio AR (1986) Preserved motor learning in Alzheimer’s disease: implications for anatomy and behavior. J Neurosci 6:3006–3009

    PubMedCASGoogle Scholar

  • Fazeli MS, Errington ML, Dolphin AC, Bliss TVP (1988) Long–term potentiation in the dentate gyrus of the anaesthetized rat is accompanied by an increase in protein efflux into push–pull cannula perfusates. Brain Res 473:51–59

    PubMedCASGoogle Scholar

  • Frautschy SA, Yang F, Irrizarry M, Hyman B, Saido TC, Hsiao K, Cole GM (1998) Microglial response to amyloid plaques in APPsw transgenic mice. Am J Pathol 152:307–317

    PubMedCASGoogle Scholar

  • Friedhoff P, von Bergen M, Mandelkow EM, Mandelkow E (2000) Structure of tau protein and assembly into paired helical filaments. Biochim Biophys Acta 1502:122–132

    PubMedCASGoogle Scholar

  • Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J, Donaldson T, Gillespie F, Guido T, Hagopian S, Johnsonwood K, Khan K, Lee M, Leibowitz P, Lieberburg I, Little S, Masliah E, McConlogue L, Montoyazavala M, Mucke L, Paganini L, Penniman E, Power M, Schenk D, Seubert P, Snyder B, Soriano F, Tan H, Vitale J, Wadsworth S, Wolozin B, Zhao J (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 373:523–527

    PubMedCASGoogle Scholar

  • Garcia J, Kimeldorf DJ, Koeling RA (1955) Conditioned aversion to saccharin resulting from exposure to gamma radiation. Science 122

  • Garcia J, Hankins WG, Rusinak KW (1976) Flavor aversion studies. Sceince 192:265–266

    CASGoogle Scholar

  • Garcia MF, Gordon MN, Hutton M, Lewis J, McGowan E, Dickey CA, Morgan D, Arendash GW (2004) The retinal degeneration (rd) gene seriously impairs spatial cognitive performance in normal and Alzheimer’s transgenic mice. Neuroreport 15:73–77

    PubMedCASGoogle Scholar

  • Gass P, Wolfer DP, Balschun D, Rudolph D, Frey U, Lipp HP, Schütz G (1998) Deficits in memory tasks of mice with CREB mutations depend on gene dosage. Learn Mem 5:274–288

    PubMedCASGoogle Scholar

  • Gerlai R, Fitch T, Bales KR, Gitter BD (2002) Behavioral impairment of APP(V717F) mice in fear conditioning: is it only cognition? Behav Brain Res 136:503–509

    PubMedGoogle Scholar

  • Ghilardi MF, Alberoni M, Marelli S, Rossi M, Franceschi M, Ghez C, Fazio F (1999) Impaired movement control in Alzheimer’s disease. Neurosci Lett 260:45–48

    PubMedCASGoogle Scholar

  • Goate A, Chartier_Harlin M C, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349:704–706

    PubMedCASGoogle Scholar

  • Golde TE (2003) Alzheimer disease therapy: can the amyloid cascade be halted? J Clin Invest 111:11–18

    PubMedCASGoogle Scholar

  • Gordon MN, King D L, Diamond DM, Jantzen PT, Boyett KV, Hope CE, Hatcher JM, DiCarlo G, Gottschall WP, Morgan D, Arendash GW (2001) Correlation between cognitive deficits and Abeta deposits in transgenic APP + PS1 mice. Neurobiol Aging 22:377–385

    PubMedCASGoogle Scholar

  • Gossen M, Bujard H (1995) Efficacy of tetracycline-controlled gene expression is influenced by cell type: commentary. Biotechniques 19:213–216 (discussion 216–217)

    Google Scholar

  • Gotz J, Chen F, van Dorpe J, Nitsch RM (2001a) Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science 293:1491–1495

    CASGoogle Scholar

  • Gotz J, Chen F, Barmettler R, Nitsch RM (2001b) Tau filament formation in transgenic mice expressing P301L tau. J Biol Chem 276:529–534

    CASGoogle Scholar

  • Gotz J, Probst A, Spillantini M G, Schafer T, Jakes R, Burki K, Goedert M (1995) Somatodendritic localization and hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau isoform. Embo J 14:1304–1313

    PubMedCASGoogle Scholar

  • Grabowski TJ, Cho HS, Vonsattel JP, Rebeck GW, Greenberg SM (2001) Novel amyloid precursor protein mutation in an Iowa family with dementia and severe cerebral amyloid angiopathy. Ann Neurol 49:697–705

    PubMedCASGoogle Scholar

  • Hale G, Good M (2005) Impaired visuospatial recognition memory but normal object novelty detection and relative familiarity judgments in adult mice expressing the APPswe Alzheimer’s disease mutation. Behav Neurosci 119:884–891

    PubMedGoogle Scholar

  • Hamilton DA, Kodituwakku P, Sutherland RJ, Savage DD (2003) Children with Fetal Alcohol Syndrome are impaired at place learning but not cued-navigation in a virtual Morris water task. Behav Brain Res 143:85–94

    PubMedGoogle Scholar

  • Hammond RS, Tull LE, Stackman RW (2004) On the delay-dependent involvement of the hippocampus in object recognition memory. Neurobiol Learn Mem 82:26–34

    PubMedGoogle Scholar

  • Hardy J (1997) Amyloid, the presenilins and Alzheimer’s disease. Trends Neurosci 20:154–159

    PubMedCASGoogle Scholar

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    PubMedCASGoogle Scholar

  • Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185

    PubMedCASGoogle Scholar

  • Hartman RE, Izumi Y, Bales KR, Paul SM, Wozniak DF, Holtzman DM (2005) Treatment with an amyloid-beta antibody ameliorates plaque load, learning deficits, and hippocampal long-term potentiation in a mouse model of Alzheimer’s disease. J Neurosci 25:6213–6220

    PubMedCASGoogle Scholar

  • Hellweg R, Lohmann P, Huber R, Kuhl A, Riepe MW (2006) Spatial navigation in complex and radial mazes in APP23 animals and neurotrophin signaling as a biological marker of early impairment. Learn Mem 13:63–71

    PubMedCASGoogle Scholar

  • Herzig MC, Winkler DT, Burgermeister P, Pfeifer M, Kohler E, Schmidt SD, Danner S, Abramowski D, Sturchler-Pierrat C, Burki K, van Duinen SG, Maat-Schieman ML, Staufenbiel M, Mathews PM, Jucker M (2004) Abeta is targeted to the vasculature in a mouse model of hereditary cerebral hemorrhage with amyloidosis. Nat Neurosci 7:954–960

    PubMedCASGoogle Scholar

  • Holcomb L, Gordon MN, McGowan E, Yu X, Benkovic S, Jantzen P, Wright K, Saad I, Mueller R, Morgan D, Sanders S, Zehr C, O’Campo K, Hardy J, Prada CM, Eckman C, Younkin S, Hsiao K, Duff K (1998) Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nature Medicine 4:97–100

    PubMedCASGoogle Scholar

  • Holcomb LA, Gordon MN, Jantzen P, Hsiao K, Duff K, Morgan D (1999) Behavioral changes in transgenic mice expressing both amyloid precursor protein and presenilin-1 mutations: lack of association with amyloid deposits. Behav Genet 29:177–185

    PubMedCASGoogle Scholar

  • Horn R, Ostertun B, Fric M, Solymosi L, Steudel A, Möller H-J (1996) Atrophy of hippocampus in patients with Alzheimer’s disease and other diseases with memory impairment. Dementia 7:182–186

    PubMedCASGoogle Scholar

  • Hsia AY, Masliah E, McConlogue L, Yu GQ, Tatsuno G, Hu K, Kholodenko D, Malenka RC, Nicoll RA, Mucke L (1999) Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci USA 96:3228–3233

    PubMedCASGoogle Scholar

  • Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang FS, Cole G (1996) Correlative memory deficits, a-beta elevation, and amyloid plaques in transgenic mice. Science 274:99–102

    PubMedCASGoogle Scholar

  • Hsiao KK, Borchelt DR, Olson K, Johannsdottir R, Kitt C, Yunis W, Xu S, Eckman C, Younkin S, Price D, Iadecola C, Clark B, Carlson G (1995) Age-related CNS disorder and early death in transgenic FVB/N mice overexpressing Alzheimer amyloid precursor proteins. Neuron 15:1203–1218

    PubMedCASGoogle Scholar

  • Huitron-Resendiz S, Sanchez-Alavez M, Gallegos R, Berg G, Crawford E, Giacchino JL, Games D, Henriksen SJ, Criado JR (2002) Age-independent and age-related deficits in visuospatial learning, sleep-wake states, thermoregulation and motor activity in PDAPP mice. Brain Res 928:126–137

    PubMedCASGoogle Scholar

  • Hulme C, Lee G, Brown GD (1993) Short-term memory impairments in Alzheimer-type dementia: evidence for separable impairments of articulatory rehearsal and long-term memory. Neuropsychologia 31:161–172

    PubMedCASGoogle Scholar

  • Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D, Davies P, Petersen RC, Stevens M, de Graaff E, Wauters E, van Baren J, Hillebrand M, Joosse M, Kwon JM, Nowotny P, Che LK, Norton J, Morris JC, Reed LA, Trojanowski J, Basun H, Lannfelt L, Neystat M, Fahn S, Dark F, Tannenberg T, Dodd PR, Hayward N, Kwok JB, Schofield PR, Andreadis A, Snowden J, Craufurd D, Neary D, Owen F, Oostra BA, Hardy J, Goate A, van Swieten J, Mann D, Lynch T, Heutink P (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393:702–705

    PubMedCASGoogle Scholar

  • Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL (1984) Alzheimer’s Disease: cell-specific pathology isolates the hippocampus formation. Science 225:1168–1170

    PubMedCASGoogle Scholar

  • Iivonen H, Nurminen L, Harri M, Tanila H, Puolivali J (2003) Hypothermia in mice tested in Morris water maze. Behav Brain Res 141:207–213

    PubMedGoogle Scholar

  • Irizarry MC, McNamara M, Fedorchak K, Hsiao K, Hyman BT (1997a) APPSw transgenic mice develop age-related A beta deposits and neuropil abnormalities, but no neuronal loss in CA1. J Neuropathol Exp Neurol 56:965–973

    CASGoogle Scholar

  • Irizarry MC, Soriano F, McNamara M, Page KJ, Schenk D, Games D, Hyman BT (1997b) Abeta deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse. J Neurosci 17:7053–7059

    CASGoogle Scholar

  • Ishihara T, Hong M, Zhang B, Nakagawa Y, Lee MK, Trojanowski JQ, Lee VM (1999) Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron 24:751–762

    PubMedCASGoogle Scholar

  • Jack CR Jr, Shiung MM, Gunter JL, O’Brien PC, Weigand SD, Knopman DS, Boeve BF, Ivnik RJ, Smith GE, Cha RH, Tangalos EG, Petersen RC (2004) Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology 62:591–600

    PubMedGoogle Scholar

  • Jankowsky JL, Slunt HH, Gonzales V, Savonenko AV, Wen JC, Jenkins NA, Copeland NG, Younkin LH, Lester HA, Younkin SG, Borchelt DR (2005) Persistent amyloidosis following suppression of Abeta production in a transgenic model of Alzheimer disease. PLoS Med 2:e355

    PubMedGoogle Scholar

  • Janus C (2004) Search strategies used by APP transgenic mice during spatial navigation in the Morris water maze. Learn Mem 11:337–346

    PubMedGoogle Scholar

  • Janus C, Welzl H, Hanna A, Lovasic L, Lane N, St George-Hyslop P, Westaway D (2004) Impaired conditioned taste aversion learning in APP transgenic mice. Neurobiol Aging 25:1213–1219

    PubMedGoogle Scholar

  • Janus C, Kim J, Hanna A, Wilson J, Price R, Dickson D, Golde T, and McGowan E (2006) Dissociation between amyloid pathology and memory impairment. In: The 10th international congress on Alzheimer’s disease and related disorders. Madrid, Spain

  • Janus C, D’Amelio S, Amitay O, Chishti MA, Strome R, Fraser P, Carlson GA, Roder JC, St George-Hyslop P, Westaway D (2000a) Spatial learning in transgenic mice expressing human presenilin 1 (PS1) transgenes. Neurobiol Aging 21:541–549

    CASGoogle Scholar

  • Janus C,皮尔森J, McLaurin J,马修斯点,江Y, Schmidt SD, Chishti MA, Horne P, Heslin D, French J, Mount HTJ, Nixon RA, Mercken M, Bergeron C, Fraser PE, St George-Hyslop P, Westaway D (2000b) A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 408:979–982

    CASGoogle Scholar

  • Jimenez AJ, Garcia-Fernandez JM, Gonzalez B, Foster RG (1996) The spatio-temporal pattern of photoreceptor degeneration in the aged rd/rd mouse retina. Cell Tissue Res 284:193–202

    PubMedCASGoogle Scholar

  • Johnson TB, Goodlett CR (2002) Selective and enduring deficits in spatial learning after limited neonatal binge alcohol exposure in male rats. Alcohol Clin Exp Res 26:83–93

    PubMedGoogle Scholar

  • Karas GB, Burton EJ, Rombouts SA, van Schijndel RA, O’Brien JT, Scheltens P, McKeith IG, Williams D, Ballard C, Barkhof F (2003) A comprehensive study of gray matter loss in patients with Alzheimer’s disease using optimized voxel-based morphometry. Neuroimage 18:895–907

    PubMedCASGoogle Scholar

  • Kavcic V,达菲CJ(2003)注意力动力学amics and visual perception: mechanisms of spatial disorientation in Alzheimer’s disease. Brain 126:1173–1181

    PubMedGoogle Scholar

  • Kawarabayashi T, Younkin LH, Saido TC, Shoji M, Ashe KH, Younkin SG (2001) Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer’s disease. J Neurosci 21:372–381

    PubMedCASGoogle Scholar

  • Kelly PH, Bondolfi L, Hunziker D, Schlecht HP, Carver K, Maguire E, Abramowski D, Wiederhold KH, Sturchler-Pierrat C, Jucker M, Bergmann R, Staufenbiel M, Sommer B (2003) Progressive age-related impairment of cognitive behavior in APP23 transgenic mice. Neurobiol Aging 24:365–378

    PubMedCASGoogle Scholar

  • Klein WL, Krafft GA, Finch CE (2001) Targeting small Abeta oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci 24:219–224

    PubMedCASGoogle Scholar

  • Knopman DS, Nissen MJ (1987) Implicit learning in patients with probable Alzheimer’s disease. Neurology 37:784–788

    PubMedCASGoogle Scholar

  • Kotilinek LA, Bacskai B, Westerman M, Kawarabayashi T, Younkin L, Hyman BT, Younkin S, Ashe KH (2002) Reversible memory loss in a mouse transgenic model of Alzheimer’s disease. J Neurosci 22:6331–6335

    PubMedCASGoogle Scholar

  • Kruger L, Mantyh PW (1989) Gustatory and related chemosensory systems In: Björklund A, Hökfelt T, Swanson LW (eds) Integrated systems of the CNS, part II. Elsevier, Amsterdam, pp 323–411

    Google Scholar

  • Ksiezak-Reding H, Wall JS (2005) Characterization of paired helical filaments by scanning transmission electron microscopy. Microsc Res Tech 67:126–140

    PubMedCASGoogle Scholar

  • Kumar-Singh S, Dewachter I, Moechars D, Lubke U, De Jonghe C, Ceuterick C, Checler F, Naidu A, Cordell B, Cras P, Van Broeckhoven C, Van Leuven F (2000) Behavioral disturbances without amyloid deposits in mice overexpressing human amyloid precursor protein with Flemish (A692G) or Dutch (E693Q) mutation. Neurobiol Dis 7:9–22

    PubMedCASGoogle Scholar

  • Lalonde R, Dumont M, Staufenbiel M, Strazielle C (2005) Neurobehavioral characterization of APP23 transgenic mice with the SHIRPA primary screen. Behav Brain Res 157:91–98

    PubMedCASGoogle Scholar

  • Lalonde R, Dumont M, Staufenbiel M, Sturchler-Pierrat C, Strazielle C (2002) Spatial learning, exploration, anxiety, and motor coordination in female APP23 transgenic mice with the Swedish mutation. Brain Res 956:36–44

    PubMedCASGoogle Scholar

  • Lamb BT, Sisodia SS, Lawler AM, Slunt HH, Kitt CA, Kearns WG, Pearson PL, Price DL, Gearhart JD (1993) Introduction and expression of the 400 kilobase amyloid precursor protein gene in transgenic mice. Nat Genet 5:22–30

    PubMedCASGoogle Scholar

  • Lamprecht R, Dudai Y (1996) Transient expression of c-Fos in rat amygdala during training is required for encoding conditioned taste aversion memory. Learn Mem 3:31–41

    PubMedCASGoogle Scholar

  • Lamprecht R, Hazvi S, Dudai Y (1997) cAMP response element-binding protein in the amygdala is required for long- but not short-term conditioned taste aversion memory. J Neurosci 17:8443–8450

    PubMedCASGoogle Scholar

  • Le R, Cruz L, Urbanc B, Knowles RB, Hsiao-Ashe K, Duff K, Irizarry MC, Stanley HE, Hyman BT (2001) Plaque-induced abnormalities in neurite geometry in transgenic models of Alzheimer disease: implications for neural system disruption. J Neuropathol Exp Neurol 60:753–758

    PubMedCASGoogle Scholar

  • LeDoux JE (1993) Emotional memory systems in the brain. Behav Brain Res 58:69–79

    PubMedCASGoogle Scholar

  • LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    PubMedCASGoogle Scholar

  • Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159

    PubMedCASGoogle Scholar

  • Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440:352–357

    PubMedCASGoogle Scholar

  • Levy E, Carman MD, Fernandez-Madrid IJ, Power MD, Lieberburg I, van Duinen SG, Bots GT, Luyendijk W, Frangione B (1990) Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 248:1124–1126

    PubMedCASGoogle Scholar

  • Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH., Yu CE, Jondro PD, Schmidt SD, Wang K (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269:973–977

    PubMedCASGoogle Scholar

  • Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G, Yen SH, Sahara N, Skipper L, Yager D, Eckman C, Hardy J, Hutton M, McGowan E (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293:1487–1491

    PubMedCASGoogle Scholar

  • Lewis J, McGowan E, Rockwood J, Melrose H, Nacharaju P, Van Slegtenhorst M, Gwinn-Hardy K, Paul Murphy M, Baker M, Yu X, Duff K, Hardy J, Corral A, Lin WL, Yen SH, Dickson DW, Davies P, Hutton M (2000) Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet 25:402–405

    PubMedCASGoogle Scholar

  • Lim F, Hernandez F, Lucas JJ, Gomez-Ramos P, Moran MA, Avila J (2001) FTDP-17 mutations in tau transgenic mice provoke lysosomal abnormalities and Tau filaments in forebrain. Mol Cell Neurosci 18:702–714

    PubMedCASGoogle Scholar

  • Lim GP, Yang F, Chu T, Chen P, Beech W, Teter B, Tran T, Ubeda O, Ashe KH, Frautschy SA, Cole GM (2000) Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J Neurosci 20:5709–5714

    PubMedCASGoogle Scholar

  • Liu L, Tapiola T, Herukka SK, Heikkila M, Tanila H (2003) Abeta levels in serum, CSF and brain, and cognitive deficits in APP + PS1 transgenic mice. Neuroreport 14:163–166

    PubMedCASGoogle Scholar

  • Logue SF, Paylor R, Wehner JM (1997) Hippocampal lesions cause learning deficits in inbred mice in the Morris water maze and conditioned-fear task. Behav Neurosci 111:104–113

    PubMedCASGoogle Scholar

  • Lovasic L, Bauschke H, Janus C (2005) Working memory impairment in a transgenic amyloid precursor protein TgCRND8 mouse model of Alzheimer’s disease. Genes Brain Behav 4:197–208

    PubMedCASGoogle Scholar

  • NMDA-receptor-depende Malenka RC, Nicoll RA (1993)nt synaptic plasticity: multiple forms and mechanisms. Trends Neurosci 16:521–527

    PubMedCASGoogle Scholar

  • Masliah E, Sisk A, Mallory M, Games D (2001) Neurofibrillary pathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. J Neuropathol Exp Neurol 60:357–368

    PubMedCASGoogle Scholar

  • Masliah E, Sisk A, Mallory M, Mucke L, Schenk D, Games D (1996) Comparison of neurodegenerative pathology in transgenic mice overexpressing V717F beta-amyloid precursor protein and Alzheimer’s disease. J Neurosci 16:5795–5811

    PubMedCASGoogle Scholar

  • Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639

    PubMedCASGoogle Scholar

  • Mayford M, Bach ME, Huang YY, Wang L, Hawkins RD, Kandel ER (1996) Control of memory formation through regulated expression of a CaMKII transgene. Science 274:1678–1683

    PubMedCASGoogle Scholar

  • 迈克尔曼氏金融,Varty GB,德尔维奇奥RA, Kazdoba TM, Parker EM, Hunter JC, Hyde LA (2003) Increased auditory startle response and reduced prepulse inhibition of startle in transgenic mice expressing a double mutant form of amyloid precursor protein. Brain Res 994:99–106

    PubMedCASGoogle Scholar

  • McEchron MD, Bouwmeester H, Tseng W, Weiss C, Disterhoft JF (1998) Hippocampectomy disrupts auditory trace fear conditioning and contextual fear conditioning in the rat. Hippocampus 8:638–646

    PubMedCASGoogle Scholar

  • McGowan E, Sanders S, Iwatsubo T, Takeuchi A, Saido T, Zehr C, Yu X, Uljon S, Wang R, Mann D, Dickson D, Duff K (1999) Amyloid phenotype characterization of transgenic mice overexpressing both mutant amyloid precursor protein and mutant presenilin 1 transgenes. Neurobiol Dis 6:231–244

    PubMedCASGoogle Scholar

  • McGowan E, Pickford F, Kim J, Onstead L, Eriksen J, Yu C, Skipper L, Murphy MP, Beard J, Das P, Jansen K, Delucia M, Lin WL, Dolios G, Wang R, Eckman CB, Dickson DW, Hutton M, Hardy J, Golde T (2005) Abeta42 is essential for parenchymal and vascular amyloid deposition in mice. Neuron 47:191–199

    PubMedCASGoogle Scholar

  • Middei S, Geracitano R, Caprioli A, Mercuri N, Ammassari-Teule M (2004) Preserved fronto-striatal plasticity and enhanced procedural learning in a transgenic mouse model of Alzheimer’s disease overexpressing mutant hAPPswe. Learn Mem 11:447–452

    PubMedGoogle Scholar

  • Milner B (1965) Visually-guided maze-learning in man: effects of bilateral hippocampal, bilateral frontal hippocampal lesions. Neuropsychologia 3:317–338

    Google Scholar

  • Milner B, Scoville WB (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiat 20:11–21

    ArticlePubMedGoogle Scholar

  • Moechars D, Dewachter I, Lorent K, Reverse D, Baekelandt V, Naidu A, Tesseur I, Spittaels K, Haute CV, Checler F, Godaux E, Cordell B, Van Leuven F (1999) Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J Biol Chem 274:6483–6492

    PubMedCASGoogle Scholar

  • Monacelli AM, Cushman LA, Kavcic V, Duffy CJ (2003) Spatial disorientation in Alzheimer’s disease: the remembrance of things passed. Neurology 61:1491–1497

    PubMedGoogle Scholar

  • Morgan D, Diamond DM, Gottschall PE, Ugen KE, Dickey C, Hardy J, Duff K, Jantzen P, DiCarlo G, Wilcock D, Connor K, Hatcher J, Hope C, Gordon M, Arendash GW (2000) A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 408:982–985

    PubMedCASGoogle Scholar

  • Morris R (1984) Developments of a water-maze procedure for studying spatal learning in the rat. J Neurosci Methods 11:47–60

    PubMedCASGoogle Scholar

  • Morris RGM (1981) Spatial localization does not require the presence of local cues. Learn Motiv 12:239–260

    Google Scholar

  • Morris RGM (1989) Synaptic plasticity and learning: Selective impairment of learning in rats and blockade of long-term potentiation in vivo by theN-methyl-d-aspartate receptor antagonist AP5. J Neurosci 9:3040–3057

    PubMedCASGoogle Scholar

  • Morris RGM (1990) Toward a representational hypothesis of the role of hippocampal synaptic plasticity in spatial and other forms of learning. Cold Spring Harbor Symp Quantitative Biol 55:161–173

    CASGoogle Scholar

  • Morrison JH, Hof PR (1997) Life and death of neurons in the aging brain. Science 278:412–419

    PubMedCASGoogle Scholar

  • Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G, Hu K, Kholodenko D, Johnson-Wood K, McConlogue L (2000) High-level neuronal expression of abeta 1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20:4050–4058

    PubMedCASGoogle Scholar

  • Mumby DG (2001) Perspectives on object-recognition memory following hippocampal damage: lessons from studies in rats. Behav Brain Res 127:159–181

    PubMedCASGoogle Scholar

  • Nicolle MM, Prescott S, Bizon JL (2003) Emergence of a cue strategy preference on the water maze task in aged C57B6 × SJL F1 hybrid mice. Learn Mem 10:520–524

    PubMedGoogle Scholar

  • Nilsberth C, Westlind-Danielsson A, Eckman CB, Condron MM, Axelman K, Forsell C, Stenh C, Luthman J, Teplow DB, Younkin SG, Naslund J, Lannfelt L (2001) The ‘Arctic’ APP mutation (E693G) causes Alzheimer’s disease by enhanced Abeta protofibril formation. Nat Neurosci 4:887–893

    PubMedCASGoogle Scholar

  • O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Oxford University Press, Oxford

    Google Scholar

  • Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM (2003a) Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging 24:1063–1070

    CASGoogle Scholar

  • Oddo S, Billings L, Kesslak JP, Cribbs DH, LaFerla FM (2004) Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 43:321–332

    PubMedCASGoogle Scholar

  • Oddo S, Caccamo A, Tran L, Lambert MP, Glabe CG, Klein WL, LaFerla FM (2006) Temporal profile of amyloid-beta (Abeta) oligomerization in an in vivo model of Alzheimer disease. A link between Abeta and tau pathology. J Biol Chem 281:1599–1604

    PubMedCASGoogle Scholar

  • Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003b) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39:409–421

    CASGoogle Scholar

  • Ogilvie JM, Speck JD (2002) Dopamine has a critical role in photoreceptor degeneration in the rd mouse. Neurobiol Dis 10:33–40

    PubMedCASGoogle Scholar

  • Ognibene E, Middei S, Daniele S, Adriani W, Ghirardi O, Caprioli A, Laviola G (2005) Aspects of spatial memory and behavioral disinhibition in Tg2576 transgenic mice as a model of Alzheimer’s disease. Behav Brain Res 156:225–232

    PubMedCASGoogle Scholar

  • Ohno M, Chang L, Tseng W, Oakley H, Citron M, Klein WL, Vassar R, Disterhoft JF (2006) Temporal memory deficits in Alzheimer’s mouse models: rescue by genetic deletion of BACE1. Eur J Neurosci 23:251–260

    PubMedGoogle Scholar

  • Olton DS, Becker JT, Handelman GE (1979) Hippocampus space and memory. Behav Brain Sci 2:313–365

    Google Scholar

  • Pai MC, Jacobs WJ (2004) Topographical disorientation in community-residing patients with Alzheimer’s disease. Int J Geriatr Psychiatry 19:250–255

    PubMedGoogle Scholar

  • Pappolla MA, Chyan YJ, Omar RA, Hsiao K, Perry G, Smith MA, Bozner P (1998) Evidence of oxidative stress and in vivo neurotoxicity of beta-amyloid in a transgenic mouse model of Alzheimer’s disease: a chronic oxidative paradigm for testing antioxidant therapies in vivo. Am J Pathol 152:871–877

    PubMedCASGoogle Scholar

  • Pasquier F, Grymonprez L, Lebert F, Van der Linden M (2001) Memory impairment differs in frontotemporal dementia and Alzheimer’s disease. Neurocase 7:161–171

    PubMedCASGoogle Scholar

  • Pedersen WA, McMillan PJ, Kulstad JJ, Leverenz JB, Craft S, Haynatzki GR (2006) Rosiglitazone attenuates learning and memory deficits in Tg2576 Alzheimer mice. Exp Neurol

  • Pennanen L, Welzl H, D’Adamo P, Nitsch RM, Gotz J (2004) Accelerated extinction of conditioned taste aversion in P301L tau transgenic mice. Neurobiol Dis 15:500–509

    PubMedCASGoogle Scholar

  • Phillips RG, Ledoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106:274–285

    PubMedCASGoogle Scholar

  • Price JL, Davies PB, Morris JC, White DL (1991) The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease. Neurobiol Aging 12:295–312

    PubMedCASGoogle Scholar

  • Probst A, Gotz J, Wiederhold KH, Tolnay M, Mistl C, Jaton AL, Hong M, Ishihara T, Lee VM, Trojanowski JQ, Jakes R, Crowther RA, Spillantini MG, Burki K, Goedert M (2000) Axonopathy and amyotrophy in mice transgenic for human four-repeat tau protein. Acta Neuropathol (Berl) 99:469–481

    CASGoogle Scholar

  • Puolivali J, Wang J, Heikkinen T, Heikkila M, Tapiola T, van Groen T, Tanila H (2002) Hippocampal A beta 42 levels correlate with spatial memory deficit in APP and PS1 double transgenic mice. Neurobiol Dis 9:339–347

    PubMedGoogle Scholar

  • Quinn JF, Bussiere JR, Hammond RS, Montine TJ, Henson E, Jones RE, Stackman RW Jr (2006) Chronic dietary alpha-lipoic acid reduces deficits in hippocampal memory of aged Tg2576 mice. Neurobiol Aging

  • Ramsden M, Kotilinek L, Forster C, Paulson J, McGowan E, SantaCruz K, Guimaraes A, Yue M, Lewis J, Carlson G, Hutton M, Ashe KH (2005) Age-dependent neurofibrillary tangle formation, neuron loss, and memory impairment in a mouse model of human tauopathy (P301L). J Neurosci 25:10637–10647

    PubMedCASGoogle Scholar

  • Repa JC, Muller J, Apergis J, Desrochers TM, Zhou Y, LeDoux JE (2001) Two different lateral amygdala cell populations contribute to the initiation and storage of memory. Nat Neurosci 4:724–731

    PubMedCASGoogle Scholar

  • Revusky SH, Bedarf EW (1967) Association of illness with prior ingestion of novel foods. Science 155:212–214

    Google Scholar

  • 活性离子束腐蚀EM,佩雷斯M, Puig B, Gich我Lim F, CuadradoM, Sesma T, Catena S, Sanchez B, Nieto M, Gomez-Ramos P, Moran MA, Cabodevilla F, Samaranch L, Ortiz L, Perez A, Ferrer I, Avila J, Gomez-Isla T (2005) Accelerated amyloid deposition, neurofibrillary degeneration and neuronal loss in double mutant APP/tau transgenic mice. Neurobiol Dis 20:814–822

    PubMedCASGoogle Scholar

  • Rizzo M, Anderson SW, Dawson J, Nawrot M (2000) Vision and cognition in Alzheimer’s disease. Neuropsychologia 38:1157–1169

    PubMedCASGoogle Scholar

  • Rizzu P, Joosse M, Ravid R, Hoogeveen A, Kamphorst W, van Swieten JC, Willemsen R, Heutink P (2000) Mutation-dependent aggregation of tau protein and its selective depletion from the soluble fraction in brain of P301L FTDP-17 patients. Hum Mol Genet 9:3075–3082

    PubMedCASGoogle Scholar

  • Roder S, Danober L, Pozza MF, Lingenhoehl K, Wiederhold KH, Olpe HR (2003) Electrophysiological studies on the hippocampus and prefrontal cortex assessing the effects of amyloidosis in amyloid precursor protein 23 transgenic mice. Neuroscience 120:705–720

    PubMedCASGoogle Scholar

  • Rodriguez G, Vitali P, Calvini P, Bordoni C, Girtler N, Taddei G, Mariani G, Nobili F (2000) Hippocampal perfusion in mild Alzheimer’s disease. Psychiatry Res 100:65–74

    PubMedCASGoogle Scholar

  • Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y, Chi H, Lin C, Holman K, Tsuda T (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 376:775–778

    PubMedCASGoogle Scholar

  • 罗杰斯,费舍尔EM,棕色的SD,彼得斯J,猎人J, Martin JE (1997) Behavioral and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for comprehensive phenotype assessment. Mamm Genome 8:711–713

    PubMedCASGoogle Scholar

  • Rosenblum K, Meiri N, Dudai Y (1993) Taste memory: the role of protein synthesis in gustatory cortex. Behav Neural Biol 59:49–56

    PubMedCASGoogle Scholar

  • Rosler A, Seifritz E, Krauchi K, Spoerl D, Brokuslaus I, Proserpi SM, Gendre A, Savaskan E, Hofmann M (2002) Skill learning in patients with moderate Alzheimer’s disease: a prospective pilot-study of waltz-lessons. Int J Geriatr Psychiatry 17:1155–1156

    PubMedGoogle Scholar

  • Rozin P, Kalat JW (1971) Specific hungers and poison avoidance as adaptive specializations of learning. Psychol Rev 78:459–486

    PubMedCASGoogle Scholar

  • Sadowski M, Pankiewicz J, Scholtzova H,霁Y,砂岩termain D, Jensen CH, Duff K, Nixon RA, Gruen RJ, Wisniewski T (2004) Amyloid-beta deposition is associated with decreased hippocampal glucose metabolism and spatial memory impairment in APP/PS1 mice. J Neuropathol Exp Neurol 63:418–428

    PubMedCASGoogle Scholar

  • Safar JG, DeArmond SJ, Kociuba K, Deering C, Didorenko S, Bouzamondo-Bernstein E, Prusiner SB, Tremblay P (2005) Prion clearance in bigenic mice. J Gen Virol 86:2913–2923

    PubMedCASGoogle Scholar

  • 萨哈金BJ,莫里斯RG Evenden杰,综,征税R, Philpot M, Robbins TW (1988) A comparative study of visuospatial memory and learning in Alzheimer-type dementia and Parkinson’s disease. Brain 111(Pt 3):695–718

    PubMedGoogle Scholar

  • Santa Cruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, Guimaraes A, DeTure M, Ramsden M, McGowan E, Forster C, Yue M, Orne J, Janus C, Mariash A, Kuskowski M, Hyman B, Hutton M, Ashe KH (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science 309:476–481

    CASGoogle Scholar

  • Save E, Poucet B, Foreman N, Buhot M-C (1992) Object exploration and reactions to spatial and nonspatial changes in hooded rats following damage to parietal cortex or hippocampal formation. Behavioural Neuroscience 106:447–456

    CASGoogle Scholar

  • Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, Bird TD, Hardy J, Hutton M, Kukull W, Larson E, Levy_Lahad E, Viitanen M, Peskind E, Poorkaj P, Schellenberg G, Tanzi R, Wasco W, Lannfelt L, Selkoe D, Younkin S (1996) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 2:864–870

    PubMedCASGoogle Scholar

  • Selkoe DJ (2001) Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J Alzheimers Dis 3:75–80

    PubMedCASGoogle Scholar

  • Selkoe DJ (2002) Deciphering the genesis and fate of amyloid beta-protein yields novel therapies for Alzheimer disease. J Clin Invest 110:1375–1381

    PubMedCASGoogle Scholar

  • Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375:754–760

    PubMedCASGoogle Scholar

  • Sidman RL, Green MC (1965) Retinal Degeneration in the Mouse: Location of the Rd Locus in Linkage Group Xvii. J Hered 56:23–29

    PubMedCASGoogle Scholar

  • Smith MA, Hirai K, Hsiao K, Pappolla MA, Harris PL, Siedlak SL, Tabaton M, Perry G (1998) Amyloid-beta deposition in Alzheimer transgenic mice is associated with oxidative stress. J Neurochem 70:2212–2215

    ArticlePubMedCASGoogle Scholar

  • Smith ML, Milner B (1981) The role of the right hippocampus in the recall of spatial location. Neuropsychologia 19:781–793

    PubMedCASGoogle Scholar

  • Spires TL, Meyer-Luehmann M, Stern EA, McLean PJ, Skoch J, Nguyen PT, Bacskai BJ, Hyman BT (2005) Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. J Neurosci 25:7278–7287

    PubMedCASGoogle Scholar

  • Spittaels K, Van den Haute C, Van Dorpe J, Bruynseels K, Vandezande K, Laenen I, Geerts H, Mercken M, Sciot R, Van Lommel A, Loos R, Van Leuven F (1999) Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. Am J Pathol 155:2153–2165

    PubMedCASGoogle Scholar

  • Squire LR (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev 99:195–231

    PubMedCASGoogle Scholar

  • Stackman RW, Eckenstein F, Frei B, Kulhanek D, Nowlin J, Quinn JF (2003) Prevention of age-related spatial memory deficits in a transgenic mouse model of Alzheimer’s disease by chronic Ginkgo biloba treatment. Exp Neurol 184:510–520

    PubMedGoogle Scholar

  • Sturchler-Pierrat C, Abramowski杜克M, D Wiederhold K-H, Mistl C, Rothacher S, Ledermann B, Bürki K, Frey P, Paganetti PA, Waridel C, Calhoun ME, Jucker M, Probst A, Staufenbiel M, Sommer B (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci USA 94:13287–13292

    PubMedCASGoogle Scholar

  • Tales A, Muir J, Jones R, Bayer A, Snowden RJ (2004) The effects of saliency and task difficulty on visual search performance in ageing and Alzheimer’s disease. Neuropsychologia 42:335–345

    PubMedGoogle Scholar

  • Tan J, Town T, Paris D, Mori T, Suo Z, Crawford F, Mattson MP, Flavell RA, Mullan M (1999) Microglial activation resulting from CD40-CD40L interaction after beta-amyloid stimulation. Science 286:2352–2355

    PubMedCASGoogle Scholar

  • Tanemura K, Murayama M, Akagi T, Hashikawa T, Tominaga T, Ichikawa M, Yamaguchi H, Takashima A (2002) Neurodegeneration with tau accumulation in a transgenic mouse expressing V337M human tau. J Neurosci 22:133–141

    PubMedCASGoogle Scholar

  • Tatebayashi Y, Miyasaka T, Chui DH, Akagi T, Mishima K, Iwasaki K, Fujiwara M, Tanemura K, Murayama M, Ishiguro K, Planel E, Sato S, Hashikawa T, Takashima A (2002) Tau filament formation and associative memory deficit in aged mice expressing mutant (R406W) human tau. Proc Natl Acad Sci USA 99:13896–13901

    PubMedCASGoogle Scholar

  • Van Dam D, D’Hooge R, Staufenbiel M, Van Ginneken C, Van Meir F, De Deyn PP (2003) Age-dependent cognitive decline in the APP23 model precedes amyloid deposition. Eur J Neurosci 17:388–396

    PubMedGoogle Scholar

  • Victoroff J, Zarow C, Mack WJ, Hsu E, Chui HC (1996) Physical aggression is associated with preservation of substantia nigra pars compacta in Alzheimer disease. Arch Neurol 53:428–434

    PubMedCASGoogle Scholar

  • Vidal R, Frangione B, Rostagno A, Mead S, Revesz T, Plant G, Ghiso J (1999) A stop-codon mutation in the BRI gene associated with familial British dementia. Nature 399:776–781

    PubMedCASGoogle Scholar

  • Vidal R, Revesz T, Rostagno A, Kim E, Holton JL, Bek T, Bojsen-Moller M, Braendgaard H, Plant G, Ghiso J, Frangione B (2000) A decamer duplication in the 3’ region of the BRI gene originates an amyloid peptide that is associated with dementia in a Danish kindred. Proc Natl Acad Sci USA 97:4920–4925

    PubMedCASGoogle Scholar

  • Vnek N, Rothblat LA (1996) The hippocampus and long-term object memory in the rat. J Neurosci 16:2780–2787

    PubMedCASGoogle Scholar

  • von Bergen M, Barghorn S, Biernat J, Mandelkow EM, Mandelkow E (2005) Tau aggregation is driven by a transition from random coil to beta sheet structure. Biochim Biophys Acta 1739:158–166

    Google Scholar

  • Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539

    PubMedCASGoogle Scholar

  • Watson DJ, Selkoe DJ, Teplow DB (1999) Effects of the amyloid precursor protein Glu693–>Gln ‘Dutch’ mutation on the production and stability of amyloid beta-protein. Biochem J 340 (Pt 3):703–709

    PubMedCASGoogle Scholar

  • Wehner JM, Sleight S, Upchurch M (1990) Hippocampal protein kinase C activity is reduced in poor spatial learners. Brain Res 523:181–187

    PubMedCASGoogle Scholar

  • Weiss C, Venkatasubramanian PN, Aguado AS, Power JM, Tom BC, Li L, Chen KS, Disterhoft JF, Wyrwicz AM (2002) Impaired eyeblink conditioning and decreased hippocampal volume in PDAPP V717F mice. Neurobiol Dis 11:425–433

    PubMedCASGoogle Scholar

  • Westerman MA, Cooper-Blacketer D Mariash A, Kotilinek L, Kawarabayashi T, Younkin LH, Carlson GA, Younkin SG, Ashe KH (2002) The relationship between Abeta and memory in the Tg2576 mouse model of Alzheimer’s disease. J Neurosci 22:1858–1867

    PubMedCASGoogle Scholar

  • 怀特豪斯PJ,价格DL, Struble RG,克拉克啊,忸怩作态le JT, Delon MR (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215:1237–1239

    PubMedCASGoogle Scholar

  • Wolfer DP, Lipp HP (2000) Dissecting the behaviour of transgenic mice: is it the mutation, the genetic background, or the environment. Exp Physiol 85:627–634

    PubMedCASGoogle Scholar

  • Woodruff-Pak DS (2001) Eyeblink classical conditioning differentiates normal aging from Alzheimer’s disease. Integr Physiol Behav Sci 36:87–108

    PubMedCASGoogle Scholar

  • Yamamoto A, Lucas JJ, Hen R (2000) Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell 101:57–66

    PubMedCASGoogle Scholar

  • Younkin SG (1998) The role of A beta 42 in Alzheimer’s disease. J Physiol Paris 92:289–292

    PubMedCASGoogle Scholar

  • Zehr C, Lewis J, McGowan E, Crook J, Lin WL, Godwin K, Knight J, Dickson DW, Hutton M (2004) Apoptosis in oligodendrocytes is associated with axonal degeneration in P301L tau mice. Neurobiol Dis 15:553–562

    PubMedCASGoogle Scholar

  • 张B, Higuchi M, Yoshiyama Y,石原T,形式n MS, Martinez D, Joyce S, Trojanowski JQ, Lee VM (2004) Retarded axonal transport of R406W mutant tau in transgenic mice with a neurodegenerative tauopathy. J Neurosci 24:4657–4667

    PubMedCASGoogle Scholar

  • Zhang B, Maiti A, Shively S, Lakhani F, McDonald-Jones G, Bruce J, Lee EB, Xie SX., Joyce S, Li C, Toleikis PM, Lee VM, Trojanowski JQ (2005) Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc Natl Acad Sci USA 102:227–231

    PubMedCASGoogle Scholar

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence toChristopher G. Janus.

Additional information

Edited by Andrew Holmes

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eriksen, J.L., Janus, C.G. Plaques, Tangles, and Memory Loss in Mouse Models of Neurodegeneration.Behav Genet37, 79–100 (2007). https://doi.org/10.1007/s10519-006-9118-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:https://doi.org/10.1007/s10519-006-9118-z

Keywords

  • Alzheimer’s disease
  • Tauopathy
  • Dementia
  • Transgenic mouse models