条文本

原始研究
逆转胰腺癌粘连形成的肿瘤stroma-targeted一氧化氮nanogel克服阻力在胰腺肿瘤
  1. Hsi-Chien黄1,2,
  2. Yun-Chieh唱1,2,
  3. Chung-Pin李3,4,5,
  4. Dehui广域网1,
  5. Po-Han曹国伟1,
  6. Yu-Ting曾1,
  7. Bo-Wen廖1,
  8. Hui-Teng程6,7,
  9. Fu-Fei许8,
  10. Chieh-Cheng黄1,
  11. Yi-Ting陈2,
  12. 我家廖1,
  13. 新志谢1,
  14. 林玉娟施1,
  15. I-Ju刘8,
  16. Han-Chung吴8,
  17. Tsai-Te陆1,
  18. 简王2,
  19. Yunching陈1
  1. 1生物医学工程研究所和前沿研究中心在基础和应用科学的问题,国立清华大学,新竹、台湾
  2. 2化学工程学系,国立清华大学,新竹、台湾
  3. 3胃肠病学和肝脏病学,医学系的,台北荣民总医院,台北、台湾
  4. 4临床技能培训,分工医学教育,台北荣民总医院,台北、台湾
  5. 5国立阳明大学医学院,台北、台湾
  6. 6内科,国立台湾大学医院产业生物医药园分支,朱贝市、台湾
  7. 7内科,国立台湾大学医院新竹分公司,新竹、台湾
  8. 8细胞和机体生物学研究所,台湾中央研究院,台北、台湾
  1. 对应到Yunching Chen博士生物医学工程研究所、国立清华大学,新竹,台湾;yunching在{}mx.nthu.edu.tw;Tsai-Te博士,生物医学工程研究所、国立清华大学,新竹,台湾;ttlu在{}mx.nthu.edu.tw;化学工程系,简王博士国立清华大学,新竹,台湾;janewang在{}mx.nthu.edu.tw

文摘

客观的基质的障碍,如丰富多基质特性的胰腺导管腺癌(PDAC),可以阻止的交付和减少tumour-penetrating能力疗法如肿瘤坏死factor-related凋亡诱导配体(TRAIL),可以选择性地诱导癌细胞凋亡。本研究旨在开发一个TRAIL-based nanotherapy不仅消除肿瘤细胞外基质屏障提高跟踪交货也克服阻止抗凋亡机制在PDAC小道抵抗。

设计一氧化氮(NO)在防止组织粘连形成过程中发挥作用,这样就可以送到扰乱PDAC基质屏障,提高跟踪交货。我们应用一个在vitro-in体内组合噬菌体展示技术识别新肽配体目标多基质在小鼠和人类原位PDAC。然后,我们构建了一个stroma-targeted nanogel修改与噬菌体display-identified肿瘤stroma-targeting肽co-deliver没有和小道PDAC和检查抗癌的效果在三维球体的文化在体外和原位PDAC模型在活的有机体内

结果交付没有的PDAC肿瘤基质导致重组激活胰腺星状细胞,减轻粘连形成的肿瘤凋亡bcl - 2蛋白表达的差别,对这些,从而促进肿瘤渗透通过小道和大幅增强的抗肿瘤疗效跟踪治疗。

结论co-delivery的小径和没有stroma-targeted nanogel整编了纤维肿瘤微环境和抑制肿瘤生长有可能被翻译成一个安全的和有前途的治疗PDAC。

  • 胰腺癌
  • 耐药性
  • 纤维化

数据可用性声明

所有数据都包含在相关研究文章或作为补充信息上传。所有相关数据支持这项研究的重要发现和补充文件中可用的文章。

http://creativecommons.org/licenses/by-nc/4.0/

这是一个开放的分布式条依照创作共用署名非商业性(4.0 CC通过数控)许可证,允许别人分发,混音,适应,建立这个工作非商业化,和许可他们的衍生产品在不同的协议,提供了最初的工作是正确地引用,给出合适的信用,任何更改表示,非商业使用。看到的:http://creativecommons.org/licenses/by-nc/4.0/

来自Altmetric.com的统计

请求的权限

如果你想重用任何或所有本文的请使用下面的链接,这将带你到版权税计算中心的RightsLink服务。你将能够获得快速的价格和即时允许重用内容在许多不同的方式。

本研究的意义

已知在这个问题上是什么?

  • 胰腺导管腺癌(PDAC)经常展示一个丰富多基质,这大大阻碍了渗透疗法和减少了对治疗的反应。

  • 临床试验重组肿瘤坏死factor-related凋亡诱导配体(TRAIL)或TRAIL受体受体激动剂显示只有一个温和的治疗对晚期PDAC患者由于短半衰期重组及其在肿瘤组织低生物利用度。

  • 的carcinoma-associated纤维母细胞(CAF) diversity-most特别是炎性战乱国家表达促炎细胞因子和染色战乱国家主要生产细胞外基质成分起着至关重要的作用在肿瘤进展和耐化疗和免疫治疗各种癌症,包括PDAC。

有什么新发现吗?

  • 我们采用了一个在vitro-in体内组合噬菌体展示技术识别目标肿瘤相关的新型肿瘤stroma-targeting肽配体胰腺星状细胞在原位PDAC模型。

  • 一氧化氮(NO)可能正常化的炎症和粘连形成表型胰腺星状细胞和触发凋亡PDAC的敏化作用。

  • 肿瘤stroma-targeted nanogel(修改噬菌体display-identified肿瘤stroma-targeting肽)包含没有供体和小道可以编写多见间质,减少凋亡通路的活动从而促进肿瘤渗透的痕迹和大幅增强的抗肿瘤疗效跟踪治疗。

本研究的意义

它会如何影响临床实践在可预见的未来吗?

  • 发现的肿瘤stroma-targeting肽噬菌体展示目标战乱国家也可能在其他类型的肿瘤的特点是特别加强粘连形成,可用于癌症诊断。

  • 鉴于目前有限的治疗选择PDAC患者,这项研究提供了新的视角PDAC疗法使用stroma-targeted交付系统组成的方阵,里面没有与潜在的捐赠者和治疗proapoptotic蛋白质翻译成一个安全的和有前途的PDAC治疗。

介绍

胰腺导管腺癌(PDAC)是最致命的癌症之一,5年生存率不到5%。1PDAC经常展示一个丰富多基质,这大大阻碍了渗透疗法,包括小分子化疗和大分子药物(即肿瘤坏死factor-related凋亡诱导配体,小道),肿瘤。2因此,迫切需要确定PDAC新的治疗策略。

使用策略来消除细胞外基质(ECM)屏障结合标准化疗已经显示出有益的PDAC患者预后的临床前和临床试验。3 - 6例如,酶ECM-degradation策略涉及管理的胶原酶或透明质酸酶被用来消耗肿瘤基质,增加药物输送。7然而,意外中毒或死亡后观察ECM-degrading酶的系统性管理。7此外,酶ECM的损耗可能赋予PDAC肿瘤增强的攻击性,这表明发展多stroma-modulating代理没有系统性毒性和protumour效应可能是一个潜在的治疗PDAC治疗策略。8carcinoma-associated的最新研究成纤维细胞(CAF) diversity-most特别是炎性战乱国家表达促炎细胞因子和染色战乱国家主要生产ECM组件的发展产生了新的见解新颖的方法来“正常化”战乱国家向不活跃状态变得敏感PDAC化疗和免疫治疗。9日10鉴于激活胰腺星状细胞已经在PDAC战乱国家的主要来源,它可能会调整多和炎症肿瘤微环境(时差)重组已经被激活,所以可能会提供一个比酶ECM损耗更有效的治疗方法。

一氧化氮(NO)在表达下调过程中发挥作用成纤维细胞活化,防止组织粘连形成抑制各种纤维化疾病的进展。11 - 13此外,据报道,没有激活凋亡通路通过调节凋亡bcl - 2家族成员和肿瘤抑制基因p53。14日15之前基于这些结果,我们提出的重组激活已经通过抑制纤维发生的基因的表达和抑制凋亡通路没有将耗尽多肿瘤间质,促进肿瘤的渗透在PDAC抗癌药物和恢复细胞凋亡敏感性。

因为它优先触发癌细胞凋亡,TRAIL-based疗法是一个潜在的抗癌治疗。16日17然而,重组小道或TRAIL受体受体激动剂临床试验显示只有一个温和的治疗对晚期PDAC患者。16 18 19追踪治疗的疗效是有限的由于短半衰期的重组之路和其低生物利用度在肿瘤组织中由于基质屏障。20.第二,PDAC细胞bcl - 2这样的凋亡蛋白过表达起来从而Bcl-xL,导致TRAIL-induced凋亡阻力。21本研究旨在开发一个TRAIL-based nanotherapy,不仅消除了ECM障碍增加跟踪交付到肿瘤还在PDAC克服道路阻塞抗凋亡机制抵抗。为了实现这一目的,我们开发了纳米颗粒(NPs),我们称为TRAIL-NO@Nanogel蚕丝蛋白(SF)水凝胶组成的核心满载小道和外壳组成的脂质和保利(lactic-coglycolic)酸(PLGA)含有一种合成没有捐赠者dinitrosyl铁复杂(dinitrosyl铁复合物(DNIC);铁(μ-SEt)2(没有)4)。22 - 24由于其通用性好、生物相容性、生物降解性和低免疫原性,科幻小说被选中来携带纳米水凝胶的核心。25日26日实现目标交付PDAC多见间质,我们采用了一个在vitro-in体内组合噬菌体展示技术识别目标肿瘤相关的小说肽配体已经被在一个原位PDAC模型。噬菌体display-identified肿瘤stroma-targeting肽共轭TRAIL-NO@Nanogel提高交付PDAC的痕迹也没有。见图1,肿瘤stroma-targeted TRAIL-NO@Nanogel减少粘连形成和改进交付在原位PDAC模型。此外,我们证明了重组的可行性多见间质和bcl - 2表达下调抗凋亡蛋白的表达并通过肿瘤Bcl-xL stroma-targeted没有交付,从而改善追踪治疗的功效。

图1

示意图显示肿瘤的机制stroma-targeted TRAIL-NO@Nanogel抑制PDAC进展在老鼠身上。没有释放肿瘤stroma-targeted TRAIL-NO@Nanogel整编了纤维肿瘤微环境的多PDAC。(1)没有释放NPs修改与肿瘤stroma-targeting肽被噬菌体展示抑制PSC活化,减少ECM生产和增加在PDAC肿瘤灌注。(2)不让多基质和克服阻力,使感光PDAC肿瘤治疗。(3)Co-delivery的小道,没有肿瘤stroma-targeted TRAIL-NO@Nanogel有效地抑制肿瘤生长。ECM,细胞外基质;不,一氧化氮;NPs,纳米颗粒;PDAC,胰腺导管腺癌;PSC,胰腺星状细胞; TRAIL, tumour necrosis factor-related apoptosis-inducing ligand.

结果

重组凋亡蛋白的PDAC差别已经被激活,对这些细胞没有

激活已经被认为是关键调解人的ECM组件的生产基质在PDAC隔间。27探索的机制没有调节PSC激活,已经被激活与TGFβ处理0.5µM DNIC 24小时,信使核糖核酸(mRNA)表达的一组84年关键基因参与纤维化检查RT2分析器PCR数组(图2一个,请参阅在线补充表S1)。大多数fibrosis-related基因,包括基因编码ECM-remodelling酶,TGFβ信号因子和炎性细胞因子,DNIC治疗后表达下调,表明没有抑制PSC激活。我们下一个执行中存在验证标记的信使rna表达水平myofibroblast激活(ACTA2, COL1A1和TGFB1)。类似于数组PCR分析的结果,不存在结果表明,降低了ACTA2的mRNA表达,COL1A1和TGFB1已经被激活(图2 b)。此外,我们观察到显著剂量依赖性降低α-smooth肌肉肌动蛋白(SMA)和胶原蛋白表达,表达的下游TGFβ信号分子(NF-κB和IκBα)和profibrotic Akt激活与DNIC治疗后(图2 c,请参阅在线补充图S1)。

Reprogramming of activated PSCs and downregulation of antiapoptotic proteins in PDAC cells by NO. (A) The mRNA expression levels of a panel of 84 key fibrosis-associated genes in primary, culture-activated human PSCs after 24 hours of treatment with DNIC (0.5 µM) were measured with an RT2 Profiler PCR array. The results are expressed as the fold change relative to the corresponding level in the untreated control group (n=2). (B) Expression levels of myofibroblast activation markers in primary, culture-activated human PSCs after 24 hours of treatment with DNIC (0.5 µM) were measured by RT-qPCR. The results are expressed as the fold change relative to the corresponding level in the untreated control group (n=5). (C) Western blotting was used to analyse α-SMA and collagen I protein expression as well as downstream TGFβ signalling activation (phospho-AKT, phospho-NF-κB and phospho-IκBα levels) in primary, culture-activated human PSCs treated with or without increasing concentrations of DNIC. The experiments were repeated two times independently. (D) Expression levels of proinflammatory cytokines in primary, culture-activated human PSCs in a coculture system with PDAC cells (2×105 AsPC-1 cells) after 24 hours of treatment with DNIC (2 µM) were measured by RT-qPCR. The results are expressed as the fold change relative to the corresponding level in the untreated control group (n=3). (E) Western blotting was used to analyse p53, Bcl-xL and Bcl-2 expression in AK4.4 cells. The experiments were repeated two times independently. (F) Dox (2 or 4 µM) in combination with DNIC (2 µM) significantly enhanced the induction of apoptosis in murine AK4.4 and human AsPC-1 PDAC cells, as detected using annexin V staining (n=3). (G) Recombinant TRAIL (2000 ng/mL) in combination with DNIC (2 µM) significantly enhanced the induction of apoptosis in murine AK4.4 and human AsPC-1 PDAC cells, as detected using annexin V staining (n=4). DNIC, dinitrosyl iron complexes; ECM, extracellular matrix; IL, interleukin; NO, nitric oxide; PDAC, pancreatic ductal adenocarcinoma; PSC, pancreatic stellate cells; SMA, smooth muscle actin; TRAIL, tumour necrosis factor-related apoptosis-inducing ligand.
" data-icon-position="" data-hide-link-title="0">图2
图2

重组凋亡蛋白的PDAC差别已经被激活,对这些细胞没有。(A)的mRNA表达水平84键fibrosis-associated基因主面板,culture-activated人类已经经过24小时的治疗DNIC(0.5µM)测定RT2分析器PCR数组。结果表示为褶皱变化相对于未经处理的相应水平对照组(n = 2)。(B)表达水平的myofibroblast激活标记在初级,culture-activated人类已经与DNIC治疗24小时后(0.5µM)被RT-qPCR测量。结果表示为褶皱变化相对于未经处理的相应水平对照组(n = 5)。(C)西方墨点法用于分析α-SMA我胶原蛋白表达以及下游TGFβ信号激活(phospho-AKT phospho-NF-κB和phospho-IκBα水平),culture-activated人类已经被接受或没有DNIC浓度增加。独立实验重复两次。(D)的促炎细胞因子表达水平初级,culture-activated人类已经与PDAC coculture系统细胞(2×105AsPC-1细胞)与DNIC治疗24小时后(2µM)被RT-qPCR测量。结果表示为褶皱变化相对于未经处理的相应水平对照组(n = 3)。(E)西方墨点法用于分析p53, Bcl-xL和bcl - 2表达AK4.4细胞。独立实验重复两次。(F)阿霉素(2或4µM)结合DNIC(2µM)显著增强细胞凋亡的诱导小鼠AK4.4和人类AsPC-1 PDAC细胞,发现使用膜联蛋白V染色(n = 3)。(G)重组小道(2000 ng / mL)结合DNIC(2µM)显著增强细胞凋亡的诱导小鼠AK4.4和人类AsPC-1 PDAC细胞,发现使用膜联蛋白V染色(n = 4)。DNIC dinitrosyl铁复合物;ECM,细胞外基质;IL,白介素;不,一氧化氮; PDAC, pancreatic ductal adenocarcinoma; PSC, pancreatic stellate cells; SMA, smooth muscle actin; TRAIL, tumour necrosis factor-related apoptosis-inducing ligand.

除了profibrotic表型,从肿瘤细胞分泌的旁分泌因子激活已经向炎性表型。9探讨PDAC细胞之间的相互作用,已经被我们培养已经PDAC Transwell插入细胞的存在。我们发现一些促炎细胞因子、白介素(IL1B IL 1),白细胞介素6、IL11, CXCL2处于受控CSF3,在已经被认为是调节coculture系统PDAC细胞,由存在决定(图2 d)。暴露在没有捐赠者DNIC显著减少促炎细胞因子的mRNA表达已经被感染的细胞与PDAC coculture系统(图2 d),表明没有也正常已经的炎性表型。

最后,我们观察到减少凋亡蛋白bcl - 2的表达和Bcl-xL增加肿瘤抑制基因p53的表达PDAC细胞DNIC治疗后,指示的能力没有激活凋亡通路(图2 e,请参阅在线补充图S2)。评估的影响没有对化疗所致或TRAIL-induced抗癌效果,我们发现小鼠AK4.4细胞的凋亡和人类AsPC-1 PDAC细胞DNIC治疗或化疗药物(阿霉素或宝石)/或小道16小时使用一个膜联蛋白V-binding化验,发现DNIC和化疗药物/或TRAIL诱导显著增加细胞凋亡较单一治疗(图2 f, G,请参阅在线补充图S3)。总的来说,结果表明,没有充当antifibrotic和抗炎效应和tslp癌症细胞抗癌疗法。

In vitro/in vivo combinatorial biopanning of the Ph.D.−12 phage display peptide library in a murine orthotopic PDAC model in vivo and in human PSCs in vitro. (A) Schematic diagram of the method used for in vitro–in vivo combinatorial phage display biopanning. A phage display random peptide library was intravenously injected into orthotopic murine PDAC models generated using AK4.4.28 One hour after injection, bound phages were isolated from PDAC tumours and amplified for subsequent rounds of biopanning. After the first round of in vivo selection, we performed three cycles of in vitro biopanning using human PSCs. Enriched phages from the third in vitro biopanning round were randomly selected for amplification, and the affinity of each selected phage for PSCs was evaluated by ELISA and compared with that of a negative control helper phage. The gene encoding the PDAC tumour stroma-specific oligopeptide displayed on the selected phage was amplified by PCR, cloned and sequenced. (B) Identification of phages capable of binding primary, culture-activated human PSCs. PDAC stroma-bound phage clones were selected by ELISA. A control phage without an insert was used as the negative control (control phage). The red line indicates a threshold binding affinity >2.5-fold greater than that of the negative control helper phage threshold. (C) primary culture-activated human PSCs were incubated with representative positively selected phage clones expressing different sequences. The binding affinities were measured using phage ELISA (n=3). The red line indicates a threshold binding affinity >2.5-fold greater than that of the negative control helper phage threshold. (D) Verification of the tumour-homing abilities of phage clones in the orthotopic PDAC model. PDAC (AK4.4) orthotopic tumour-bearing mice were intravenously injected with phage clones. One hour later, the organs/tumours were harvested, and the phages were recovered and titrated using the plaque assay (n=3–6). Two-tailed Mann-Whitney U test, *p<0.05 compared with the negative control helper phage. (E) Representative images of immunofluorescence) staining to detect phage clones in PDAC. Red, phage (anti-M13 antibody); green, α-SMA; blue, nuclei (DAPI). Scale bars, 20 µm. All data are shown as the mean±SE of the mean (SEM). PDAC, pancreatic ductal adenocarcinoma; PSC, pancreatic stellate cells; SMA, smooth muscle actin.
" data-icon-position="" data-hide-link-title="0">图3
图3

体外/体内的组合,biopan博士−12噬菌体展示肽库在小鼠原位PDAC模型在活的有机体内在人类已经被在体外。(一)原理图的方法在vitro-in体内组合噬菌体展示,biopan。噬菌体展示随机肽库是通过静脉注入原位鼠PDAC使用AK4.4生成模型。28一小时后注射,结合噬菌体隔绝PDAC肿瘤并为后续轮,biopan放大。经过第一轮的在活的有机体内选择,我们执行三个周期在体外,biopan,人类已经被使用。从第三个富集噬菌体在体外放大,biopan轮被随机选择,每个选择的亲和力噬菌体对已经被认为是评估ELISA和与负控制辅助噬菌体。基因编码的PDAC肿瘤stroma-specific寡肽显示在选中的噬菌体被PCR放大,克隆和测序。(B)鉴定噬菌体能够绑定主,人类已经culture-activated。通过ELISA PDAC stroma-bound噬菌体克隆选择。控制没有插入噬菌体作为消极的控制(控制噬菌体)。红色线表示阈值绑定关联> 2.5倍大于负控制辅助噬菌体的阈值。(C)主要culture-activated人类已经孵化了代表积极选择的噬菌体克隆表达不同的序列。绑定亲和力测定使用噬菌体ELISA (n = 3)。红色线表示阈值绑定关联> 2.5倍大于负控制辅助噬菌体的阈值。(D)验证的噬菌体克隆的tumour-homing能力原位PDAC模型。 PDAC (AK4.4) orthotopic tumour-bearing mice were intravenously injected with phage clones. One hour later, the organs/tumours were harvested, and the phages were recovered and titrated using the plaque assay (n=3–6). Two-tailed Mann-Whitney U test, *p<0.05 compared with the negative control helper phage. (E) Representative images of immunofluorescence) staining to detect phage clones in PDAC. Red, phage (anti-M13 antibody); green, α-SMA; blue, nuclei (DAPI). Scale bars, 20 µm. All data are shown as the mean±SE of the mean (SEM). PDAC, pancreatic ductal adenocarcinoma; PSC, pancreatic stellate cells; SMA, smooth muscle actin.

识别肿瘤stroma-targeting肽在vivo-in体外组合噬菌体展示

目标交付的肿瘤已经在PDAC可能作为一种调节多肿瘤间质,减少ECM,同时避免由于非特异性针对不相干的副作用。因此,我们的目的是开发一个肿瘤stroma-targeted载体通过修改肿瘤PSC-targeted配体。我们利用一个在vivo-in体外组合识别stroma-targeting肽噬菌体展示策略,选择性地识别肿瘤已经被(图3一)。隔离PDAC stroma-targeted噬菌体,静脉注射噬菌体展示随机肽库注入原位鼠PDAC使用AK4.4生成模型。28一小时后注射,结合噬菌体隔绝PDAC肿瘤并为后续轮,biopan放大。经过第一轮的在活的有机体内选择,我们执行三个周期在体外,biopan使用人类已经被(图3一)。我们发现噬菌体浓度增加,biopan的每个周期(见在线补充图S4)。从第三个富集噬菌体在体外放大,biopan轮被随机选择,每个选择的亲和力噬菌体对已经被认为是评价ELISA和比较与消极控制辅助噬菌体(图3 b, C)。使用一个阈值绑定关联> 2.5倍大于负控制辅助噬菌体的阈值,在150噬菌体克隆,克隆55有效绑定已经被(图3 b, C,请参阅在线补充图S5)。克隆测序的55束缚已经被证明他们显示相同的共识肽图案(表1)。我们也观察到,富集噬菌体不仅承认已经被激活,而且适度绑定到恶性PDAC细胞(图3 b, C,请参阅在线补充图S5)。相比之下,PDAC stroma-targeted噬菌体并没有表现出巨大的亲和力对正常小鼠肝细胞(FL83B)(见在线补充图S6)。最后,从这些55噬菌体克隆,我们选择了7为进一步评估基于序列保护和ELISA结果(表1)。

表1

序列的噬菌体克隆分离在vitro-in体内的组合,biopan博士−12噬菌体展示肽库的原位小鼠胰腺导管腺癌模型在活的有机体内和人类已经被在体外

图4

绑定特定噬菌体的胰腺癌患者活检标本。(A)胰腺癌患者活检标本和LQT28孵化,RDY56或FSV117 peptide-displaying M13噬菌体或控制辅助噬菌体和探测到anti-M13噬菌体抗体。规模的酒吧,40µm。(B)的绑定LQT28, RDY56或FSV117 peptide-displaying噬菌体肿瘤与邻近正常组织24胰腺癌患者(6例胰腺癌患者的每一个阶段)。(C)量化褶皱变化(肿瘤与正常)IHC LQT28强度,RDY56或FSV117 peptide-displaying M13噬菌体在胰腺癌患者活检标本使用斐济。(n = 120段肿瘤和邻近的正常组织的图像从胰腺癌患者24日)所有数据显示为均值±SEM。* P < 0.05, * * * * P < 0.0001相比,控制辅助噬菌体。包含IHC,免疫组织化学。

Tumour stroma-targeted lipid-PLGA NPs exhibited enhanced PDAC tumour uptake and NO delivery capability to reprogramme the desmoplastic tumour stroma in PDAC. (A) Structural schematic of NPs modified with tumour stroma-targeted peptides. (B) Primary, culture-activated human PSCs were treated with coumarin 6 (C6)-loaded NPs (0.175 µg/mL) modified with the tumour stroma-targeted peptide LQT28, RDY56 or FSV117 for 1 hour. Scale bars, 20 µm. Green, coumarin 6-loaded NPs; blue, nuclei (DAPI). (C) The uptake of NPs modified with the tumour stroma-targeted peptide LQT28, RDY56 or FSV117 into human PSCs was competitively inhibited by the addition of free corresponding stroma-targeted peptide. Cells were treated with free peptides for 30 mins prior to treatment with NPs and analysed for fluorescence signals by confocal microscopy. Scale bars, 20 µm. Green, coumarin 6-loaded NPs; blue, nuclei (DAPI). (D) The cellular uptake of NPs was imaged and quantified using a Zeiss LSM 780 confocal microscope (n=4). (E) The cellular uptake of NPs with or without pretreatment with free peptides was imaged and quantified using a Zeiss LSM 780 confocal microscope (n=4). (F) The tissue distributions of C6 in different formulations (n=7–15). NPs modified with LQT28 peptides showed enhanced tissue uptake in tumours 4- hour after intravenous administration in the orthotopic AK4.4 PDAC model. (G) Seven days after the implantation of AK4.4 PDAC cells and mice were treated with LQT-NO@NPs or non-targeted NO@NPs (DNIC: 2 mg/kg) on days 7, 9, 11, 14 and 16; tumours were then analysed on day 17 by immunostaining. Representative immunofluorescence images and quantification of α-SMA-positive cells and Hoechst 33 342-positive cells in PDAC tumours after treatment with LQT-NO@NPs or non-targeted NO@NPs in a murine orthotopic (AK4.4) PDAC model. Green, α-SMA-positive myofibroblasts; blue, DAPI (top panel) or Hoechst 33 342 (bottom panel) (n=5 section images from three mice). Scale bars, 100 µm. Mice were injected intravenously with 500 µg of Hoechst 33342 on day 17, after which the tumours were harvested. (H) Three days after the implantation of AK4.4 PDAC cells and mice were treated with DNIC (2 mg/kg) and/or Dox (0.5 mg/kg) or Gem (1 mg/kg) loaded in lipid-PLGA NPs modified with LQT28 on days 3, 5, 7, 9, 11, 13 and 15; tumours were then analysed on day 16. Volumes of orthotopic PDAC tumours 16 days post implantation in treated and untreated (control) mice (n=7–8), DNIC: 2 mg/kg; Dox: 0.5 mg/kg; Gem: 1 mg/kg. (I) Representative immunofluorescence images and quantification of TUNEL staining after treatment with different formulations in a murine orthotopic (AK4.4) PDAC model, as described in (h) (n=8 section images from four mice). Scale bar, 50 µm. All data are shown as the mean±SEM. *P<0.05, **p<0.01, ***p<0.001. DNIC, dinitrosyl iron complexes; IV, intravenously; NO, nitric oxide; NP, nanoparticle; PDAC, pancreatic ductal adenocarcinoma; PLGA, poly(lactic-coglycolic) acid; PSC, pancreatic stellate cells; SMA, smooth muscle actin.
" data-icon-position="" data-hide-link-title="0">图5
图5

肿瘤stroma-targeted lipid-PLGA NPs表现出增强的PDAC肿瘤吸收和没有交付能力让PDAC多肿瘤间质。(一)结构示意图NPs与肿瘤stroma-targeted肽修改。(B)初选,culture-activated人类已经接受香豆素- 6 (C6))下载NPs(0.175µg /毫升)修改与肿瘤stroma-targeted肽LQT28 RDY56或FSV117 1小时。酒吧、规模20µm。绿色,香豆素6-loaded NPs;蓝色,原子核(DAPI)。(C)的吸收与肿瘤stroma-targeted肽LQT28 NPs修改,RDY56或FSV117人类已经被添加相应自由stroma-targeted竞争性抑制肽。细胞治疗前30分钟免费肽治疗NPs,共焦显微镜分析了荧光信号。酒吧、规模20µm。绿色,香豆素6-loaded NPs; blue, nuclei (DAPI). (D) The cellular uptake of NPs was imaged and quantified using a Zeiss LSM 780 confocal microscope (n=4). (E) The cellular uptake of NPs with or without pretreatment with free peptides was imaged and quantified using a Zeiss LSM 780 confocal microscope (n=4). (F) The tissue distributions of C6 in different formulations (n=7–15). NPs modified with LQT28 peptides showed enhanced tissue uptake in tumours 4- hour after intravenous administration in the orthotopic AK4.4 PDAC model. (G) Seven days after the implantation of AK4.4 PDAC cells and mice were treated with LQT-NO@NPs or non-targeted NO@NPs (DNIC: 2 mg/kg) on days 7, 9, 11, 14 and 16; tumours were then analysed on day 17 by immunostaining. Representative immunofluorescence images and quantification of α-SMA-positive cells and Hoechst 33 342-positive cells in PDAC tumours after treatment with LQT-NO@NPs or non-targeted NO@NPs in a murine orthotopic (AK4.4) PDAC model. Green, α-SMA-positive myofibroblasts; blue, DAPI (top panel) or Hoechst 33 342 (bottom panel) (n=5 section images from three mice). Scale bars, 100 µm. Mice were injected intravenously with 500 µg of Hoechst 33342 on day 17, after which the tumours were harvested. (H) Three days after the implantation of AK4.4 PDAC cells and mice were treated with DNIC (2 mg/kg) and/or Dox (0.5 mg/kg) or Gem (1 mg/kg) loaded in lipid-PLGA NPs modified with LQT28 on days 3, 5, 7, 9, 11, 13 and 15; tumours were then analysed on day 16. Volumes of orthotopic PDAC tumours 16 days post implantation in treated and untreated (control) mice (n=7–8), DNIC: 2 mg/kg; Dox: 0.5 mg/kg; Gem: 1 mg/kg. (I) Representative immunofluorescence images and quantification of TUNEL staining after treatment with different formulations in a murine orthotopic (AK4.4) PDAC model, as described in (h) (n=8 section images from four mice). Scale bar, 50 µm. All data are shown as the mean±SEM. *P<0.05, **p<0.01, ***p<0.001. DNIC, dinitrosyl iron complexes; IV, intravenously; NO, nitric oxide; NP, nanoparticle; PDAC, pancreatic ductal adenocarcinoma; PLGA, poly(lactic-coglycolic) acid; PSC, pancreatic stellate cells; SMA, smooth muscle actin.

Delivery of TRAIL and NO by tumour stroma-targeted nanogels reduced collagen I production and enhanced apoptosis induction in PDAC/PSC 3D culture models. (A) Schematic illustration of the preparation of LQT-TRAIL-NO@Nanogel. The TRAIL-loaded SF hydrogel core was first synthesised by the solvent-mediated transformation of SF hydrogel. Using microemulsion technology, the SF hydrogel core was then coated with phospholipid DOPA to form a well-dispersed suspension in organic solvent. Next, the hydrophobic lipid-coated SF hydrogel core was formulated into lipid-PLGA NPs to form the TRAIL@Nanogel. To co-deliver NO and TRAIL into PDAC, DNIC was loaded into the TRAIL@Nanogel to form the TRAIL-NO@Nanogel. Finally, to achieve tumour stroma-targeted delivery of the TRAIL-NO@Nanogel into PDAC, the LQT28 peptide was conjugated on the surface of NPs to form the LQT-TRAIL-NO@Nanogel. (B) A representative scanning electron micrograph of the LQT-TRAIL-NO@Nanogel. Scale bar, 100 nm. (C) Kinetics of DNIC degradation and NO release from the NO@Nanogel under physiological conditions (pH 7.4). The NO@Nanogel was incubated in PBS, and DNIC degradation was measured at 360 nm using a UV spectrophotometer (n=9). The results are expressed as the percentage of the initial DNIC content. The release of NO was measured as the fluorescence intensity (excitation at 566 nm and emission at 596 nm) of the NO-specific probe DAR-1. The results are expressed as fold changes compared with time 0 (n=3). (D) Kinetics of cargo protein (FITC-BSA) release from the nanogel or NO@Nanogel under different pH conditions. Nanogel or NO@Nanogel loaded with FITC-BSA was incubated in PBS (pH 7.4) or acetic acid buffer (pH 5.5), and FITC-BSA release was measured using a plate reader at an excitation wavelength of 494 nm and an emission wavelength of 520 nm (n=3–6). *P<0.05 and ***p<0.001 compared with the nanogel at pH 7.4. (E) Serum concentration profiles of free-form FITC-labelled TRAIL in different formulations (n=3). (F) Representative immunofluorescence images of AsPC-1 PDAC cell/PSC 3D spheroid cultures after treatment with different formulations. Green, collagen I or TUNEL staining; blue, nuclei (DAPI). Scale bars, 50 µm. (G) Expression levels of collagen I in PSC 3D spheroid cultures consisting of PDAC tumour cells (murine AK4.4 or human AsPC-1 PDAC cells) and PSCs after 48 hours of treatment with TRAIL and/or DNIC loaded in different formulations were analysed and quantified by immunostaining (n=5–15). (H) Apoptosis induction in PSC 3D spheroid cultures consisting of PDAC tumour cells (murine AK4.4 or human AsPC-1 PDAC cells) and PSCs after 48 hours of treatment with TRAIL and/or DNIC loaded in different formulations was analysed and quantified by immunostaining TUNEL staining (n=5–17). All data are shown as the mean±SEM. *P<0.05, **p<0.01, ***p<0.001. 3D, three-dimensional; DNIC, dinitrosyl iron complexesn; FITC-BSA, fluorescein isothiocyanate-labelled bovine serum albumin; NO, nitric oxide; NPs, nanoparticles; PBS, phosphate-buffered saline; PDAC, pancreatic ductal adenocarcinoma; PLGA, poly(lactic-coglycolic) acid; PSC, pancreatic stellate cells; SF, silk fibroin; TRAIL, tumour necrosis factor-related apoptosis-inducing ligand.
" data-icon-position="" data-hide-link-title="0">图6
图6

交付的小道,没有肿瘤stroma-targeted纳米凝胶减少胶原蛋白我生产和增强细胞凋亡诱导PDAC / PSC 3 d文化模式。(一)示意图说明LQT-TRAIL-NO@Nanogel准备的。TRAIL-loaded科幻核心首次合成水凝胶的solvent-mediated科幻水凝胶的变换。利用微乳液技术,核心是科幻水凝胶涂与磷脂多巴的说法悬挂在有机溶剂。接下来,疏水核心被制定成lipid-PLGA NPs lipid-coated科幻水凝胶形成了TRAIL@Nanogel。co-deliver没有和小道PDAC, DNIC加载到TRAIL@Nanogel TRAIL-NO@Nanogel形式。最后,实现肿瘤stroma-targeted交付TRAIL-NO@Nanogel PDAC, LQT28肽是共轭NPs表面形成了LQT-TRAIL-NO@Nanogel。(B)代表LQT-TRAIL-NO@Nanogel的扫描电子显微照片。酒吧,规模100海里。(C) DNIC退化和没有释放动力学NO@Nanogel在生理条件下(pH值7.4)。 The NO@Nanogel was incubated in PBS, and DNIC degradation was measured at 360 nm using a UV spectrophotometer (n=9). The results are expressed as the percentage of the initial DNIC content. The release of NO was measured as the fluorescence intensity (excitation at 566 nm and emission at 596 nm) of the NO-specific probe DAR-1. The results are expressed as fold changes compared with time 0 (n=3). (D) Kinetics of cargo protein (FITC-BSA) release from the nanogel or NO@Nanogel under different pH conditions. Nanogel or NO@Nanogel loaded with FITC-BSA was incubated in PBS (pH 7.4) or acetic acid buffer (pH 5.5), and FITC-BSA release was measured using a plate reader at an excitation wavelength of 494 nm and an emission wavelength of 520 nm (n=3–6). *P<0.05 and ***p<0.001 compared with the nanogel at pH 7.4. (E) Serum concentration profiles of free-form FITC-labelled TRAIL in different formulations (n=3). (F) Representative immunofluorescence images of AsPC-1 PDAC cell/PSC 3D spheroid cultures after treatment with different formulations. Green, collagen I or TUNEL staining; blue, nuclei (DAPI). Scale bars, 50 µm. (G) Expression levels of collagen I in PSC 3D spheroid cultures consisting of PDAC tumour cells (murine AK4.4 or human AsPC-1 PDAC cells) and PSCs after 48 hours of treatment with TRAIL and/or DNIC loaded in different formulations were analysed and quantified by immunostaining (n=5–15). (H) Apoptosis induction in PSC 3D spheroid cultures consisting of PDAC tumour cells (murine AK4.4 or human AsPC-1 PDAC cells) and PSCs after 48 hours of treatment with TRAIL and/or DNIC loaded in different formulations was analysed and quantified by immunostaining TUNEL staining (n=5–17). All data are shown as the mean±SEM. *P<0.05, **p<0.01, ***p<0.001. 3D, three-dimensional; DNIC, dinitrosyl iron complexesn; FITC-BSA, fluorescein isothiocyanate-labelled bovine serum albumin; NO, nitric oxide; NPs, nanoparticles; PBS, phosphate-buffered saline; PDAC, pancreatic ductal adenocarcinoma; PLGA, poly(lactic-coglycolic) acid; PSC, pancreatic stellate cells; SF, silk fibroin; TRAIL, tumour necrosis factor-related apoptosis-inducing ligand.

的PDAC stroma-homing选中的噬菌体的潜力进一步使用一个特征在活的有机体内归航化验的噬菌体是通过静脉注入原位鼠PDAC AK4.4 tumour-bearing老鼠。最终,我们发现三个噬菌体克隆(LQT28 RDY56和FSV117)显示肿瘤自导能力大于消极控制辅助噬菌体(图3 d)。此外,这三个噬菌体克隆显示能力显著增加肿瘤与正常的器官,包括大脑、心脏和肺(图3 d)。所有三个选定的噬菌体克隆(LQT28 RDY56和FSV117)在肿瘤组织与高纯度控制噬菌体克隆和colocalised激活成纤维细胞(α-SMA积极)PDAC肿瘤(图3 e,请参阅在线补充图S7)。的数据证实了这些噬菌体的特异性PDAC肿瘤基质。

Delivery of TRAIL and NO by tumour stroma-targeted nanogels reduced collagen I production, increased apoptosis induction and suppressed tumour growth in both murine and human orthotopic PDAC models. (A) Schematic illustration of the LQT-TRAIL-NO@Nanogel treatment protocol. After the implantation of PDAC cells, mice were treated intravenously with various NP formulations encapsulating the NO donor DNIC and/or TRAIL on days 3, 5, 7, 9, 11, 13 and 15; tumour volume was measured on day 16. (B) Representative H&E, Masson’s trichrome staining and immunofluorescence images showing the results of collagen I, α-SMA and TUNEL staining in orthotopic murine PDAC (AK4.4) tumours after treatment with various formulations. Blue, nuclei (DAPI). Scale bars, 50 µm. (C–D) LQT-TRAIL-NO@Nanogel significantly reduced collagen I production (C) and α-SMA expression (D) in orthotopic PDAC tumours, as indicated by immunofluorescence staining for collagen I and α-SMA (n=7 section images from four mice). (E) Volumes of orthotopic PDAC tumours 16 days after implantation in treated and untreated (control) mice (AK4.4 PDAC model, n=10; AsPC-1 PDAC model, n=5). (F) LQT-TRAIL-NO@Nanogel significantly enhanced the induction of apoptosis in orthotopic PDAC tumours, as indicated by TUNEL staining (AK4.4 PDAC model, n=7 section images from four mice; AsPC-1 PDAC model, n=6 section images from three mice). (G) LQT-TRAIL-NO@Nanogel significantly prolonged the overall survival in orthotopic AK4.4 PDAC tumour model (n=8). ****P<0.0001 compared with untreated (control) mice, *p=0.0118 compared with LQT-NO@Nanogel, *p=0.0161 compared with LQT-TRAIL@Nanogel and *p=0.0340 compared with TRAIL-NO@Nanogel. Comparison of survival curves was performed using a log-rank Mantel-Cox test (two-sided). All data are shown as the mean±SEM. *P<0.05, **p<0.01, ***p<0.001. DNIC, dinitrosyl iron complexes; NO, nitric oxide; NP, nanoparticle; PDAC, pancreatic ductal adenocarcinoma; SMA, smooth muscle actin; TRAIL, tumour necrosis factor-related apoptosis-inducing ligand.
" data-icon-position="" data-hide-link-title="0">图7
图7

交付的小道,没有肿瘤stroma-targeted纳米凝胶减少胶原蛋白我生产,增加细胞凋亡诱导和抑制肿瘤生长在小鼠和人类原位PDAC模型。(A)的示意图说明LQT-TRAIL-NO@Nanogel治疗协议。PDAC移植后的细胞,小鼠静脉注射治疗各种NP配方封装没有捐赠者DNIC和/或记录在天3,5,7,9,11,13,15;肿瘤体积测量16天。(B)代表他走时,马森的三色的染色和免疫荧光图像,图像显示了胶原蛋白的结果我α-SMA和TUNEL染色法原位鼠PDAC (AK4.4)肿瘤治疗后各种配方。蓝色,原子核(DAPI)。酒吧、规模50µm。胶原蛋白(C - D) LQT-TRAIL-NO@Nanogel显著降低我生产(C)和α-SMA表达式(D)在原位PDAC肿瘤,我表示为胶原蛋白免疫荧光染色和α-SMA (n = 7段图像从四只老鼠)。(E)的原位PDAC肿瘤植入后16天处理和未经处理的小鼠(控制)(AK4.4 PDAC模型中,n = 10;AsPC-1 PDAC模型中,n = 5)。 (F) LQT-TRAIL-NO@Nanogel significantly enhanced the induction of apoptosis in orthotopic PDAC tumours, as indicated by TUNEL staining (AK4.4 PDAC model, n=7 section images from four mice; AsPC-1 PDAC model, n=6 section images from three mice). (G) LQT-TRAIL-NO@Nanogel significantly prolonged the overall survival in orthotopic AK4.4 PDAC tumour model (n=8). ****P<0.0001 compared with untreated (control) mice, *p=0.0118 compared with LQT-NO@Nanogel, *p=0.0161 compared with LQT-TRAIL@Nanogel and *p=0.0340 compared with TRAIL-NO@Nanogel. Comparison of survival curves was performed using a log-rank Mantel-Cox test (two-sided). All data are shown as the mean±SEM. *P<0.05, **p<0.01, ***p<0.001. DNIC, dinitrosyl iron complexes; NO, nitric oxide; NP, nanoparticle; PDAC, pancreatic ductal adenocarcinoma; SMA, smooth muscle actin; TRAIL, tumour necrosis factor-related apoptosis-inducing ligand.

绑定的特异性LQT28, RDY56 FSV117 peptide-displaying M13噬菌体对胰腺癌标本胰腺癌患者进一步追究潜在的临床应用。所选择的三个噬菌体能够识别肿瘤组织在胰腺癌标本更有效地比正常(图4 a - c)。三国噬菌体,积极率高LQT28噬菌体绑定到肿瘤组织来源于观察胰腺癌患者(79%的标本高交互)(图4 a, B)。免疫反应性与控制辅助噬菌体没有观察到肿瘤组织(图4 a, C)。

增强PDAC吸收NPs修改与肿瘤stroma-targeting肽

我们下一个检查是否nanocarrier修改与噬菌体display-identified PDAC stroma-targeting肽将实现选择性交付到PDAC基质(图5一个)。在这项研究中,我们使用lipid-PLGA NPs封装药物(没有捐赠者DNIC,化学疗法和TRAIL-loaded水凝胶)。通过使用香豆素- 6内加载lipid-PLGA NPs作为示踪分子(图5一个),我们发现的吸收与LQT28 NPs修改,RDY56或FSV117肽活性已经被显著增强与非目标NPs (PEG-NPs) (图5 b, D)。的吸收与LQT28 NPs修改,RDY56或FSV117肽显著抑制相应的自由stroma-targeting肽(图5 c, E),这表明配体依赖的细胞吸收。我们进一步评估是否修改的NPs PDAC stroma-targeting肽将增强NP吸收到体内原位PDAC肿瘤(图5 f)。静脉注射后4小时NPs与LQT28修改,RDY56或FSV117肽原位鼠PDAC (AK4.4) tumour-bearing老鼠,NP吸收的PDAC肿瘤大于非目标控制NPs (图5 f)。三肽,LQT28达到最高的积累肿瘤。

因此,LQT28肽被选为PDAC基质的靶向配体。肿瘤stroma-targeted纳米没有组装载体(LQT-NO@NP)通过封装的捐献者DNIC lipid-PLGA NPs修改LQT28肽(图5一个)。LQT-NO@NPs的大小是143海里,电动电势是−23.7 mV。DNIC的封装效率大约是75%。

减少肿瘤肿瘤stroma-targeted粘连形成的载体

我们接下来检查目标是否没有交付到PDAC基质LQT-NO@NPs会抑制肿瘤粘连形成,增加肿瘤在小鼠(AK4.4细胞)原位灌注PDAC模型(图5克)。相比之下,一道NO@NP处理和未经处理的控制,通过静脉注射LQT-NO@NPs抑制PDAC-associated纤维化的减少αsma+区(图5克),因此增加了肿瘤灌注,决定通过测量赫斯特33342年+区(图5克),在PDAC肿瘤。鉴于LQT-NO@NPs改善肿瘤灌注的潜力,我们接下来检查LQT-NO@NPs能力提高小分子抗癌药物的治疗效果在PDAC(强力霉素或宝石)。化疗药物(阿霉素或宝石)加载到LQT-NO@NPs (LQT-Dox-NO@NPs或LQT-Gem-NO@NPs),是用于治疗原位PDAC tumour-bearing如上所述,老鼠和LQT-Dox-NO@NP LQT-Gem-NO@NP治疗导致显著减少肿瘤体积(图5 h)和凋亡细胞的数量增加(图5我)在肿瘤与控制和肿瘤stroma-targeted NPs加载只有化疗药物(LQT-Dox@NPs或LQT-Gem@NPs)。因此,增强感应LQT-Dox-NO@NPs或LQT-Gem-NO@NPs可能介导的细胞凋亡的能力没有提高肿瘤灌注治疗的代理和直接影响apoptosis-related分子的表达。

没有描述的nanogel co-delivery和线索

鉴于没有消除ECM的潜在障碍和调解apoptosis-related分子的表达,我们下一个检查的能力没有提高治疗效果的PDAC小道。的准备和提出结构tumour-targeted nanogel coencapsulated没有捐赠者和重组轨迹进行描述图6。我们第一次封装重组小道在微乳液纳米lipid-coated科幻水凝胶的核心。磷脂的亲水头部可能与科幻的交互界面。脂质链疏水这样lipid-coated科幻水凝胶芯是溶于非极性溶剂,如氯仿。科幻水凝胶的solvent-mediated转换启动在微乳液的接口来封装重组。疏水TRAIL-loaded科幻小说的核心,没有制定捐赠DNIC lipid-PLGA NPs生成TRAIL-NO@Nanogel (图6)。实现肿瘤stroma-targeted交付小道,没有,我们进一步修改的表面与PDAC NPs stroma-targeting LQT28肽生成一个LQT-TRAIL-NO@Nanogel (图6)。扫描电镜(图6 b)和动态光散射分析表明,LQT-TRAIL-NO@Nanogel说法形成球体,平均直径为166.4±10.3 nm,多分散性指数0.2 - -0.3和近中性泽塔潜在的(0.310±0.694)。的小道和DNIC封装效率LQT-TRAIL-NO@Nanogel 97.3%±0.3%和41.2%±6.9%,分别。没有随着时间的推移,然后评估的累积释放使用没有特定的荧光探针4,5-diamino -N,N,N′,N′-tetraethylrhodamine (DAR-1)。连续释放没有2-24 nanogel发生在一段时间内的时间,伴随着DNIC分解(图6 c),这表明nanogel可以支持连续释放的。使用荧光素isothiocyanate-labelled牛血清白蛋白作为示踪蛋白质货物,我们发现蛋白质的释放货物在生理条件下从nanogel (pH值7.4)是慢于在酸性条件下(pH值5.5)(图6 d),这表明分解PLGA和科幻内核NPs是pH值的依赖。添加不捐赠没有显著影响蛋白质发布概要文件(图6 d)。因此,这些数据表明,nanogel提供控制和持续释放没有和蛋白质货物(也就是说,从NPs痕迹)。接下来,我们评估的药物动力学FITC-labelled小道有或没有加载在nanogel FVB / NJNarl老鼠(图6 e)。我们发现LQT-TRAIL-NO@Nanogel显著延长循环之路而自由小道后静脉管理局(图6 e)。结果表明,nanogel增加跟踪的稳定性和扩展其在血液循环半衰期。

减少胶原蛋白通过LQT-TRAIL-NO@Nanogel我生产和增加细胞凋亡诱导

检查的能力LQT-TRAIL-NO@Nanogel改造的纤维化的时间多PDAC,我们评估胶原沉积的变化在三维(3 d)组成的球体文化PDAC肿瘤细胞(小鼠AK4.4细胞或人类AsPC-1 PDAC细胞)和治疗后已经被不同的配方48小时(图6 f, G,请参阅在线补充图S8)。没有由肿瘤stroma-targeted NPs (LQT-NO@Nanogel或LQT-TRAIL-NO@Nanogel)显著抑制胶原蛋白我没有表达相比,由一道TRAIL-NO@Nanogel或独自NPs装满小道(LQT-TRAIL@Nanogel) (图6 f, G,请参阅在线补充图S8)。

我们下一个评估是否没有和小道co-delivery LQT-TRAIL-NO@Nanogel可以增强TRAIL-induced细胞死亡(图6 f、H,请参阅在线补充图S8)。凋亡细胞的比例的增加在治疗后的3 d球体文化LQT-TRAIL-NO@Nanogel治疗后显著大于NPs装载每个代理单独或与一道TRAIL-NO@Nanogel (图6 f、H,请参阅在线补充图S8)。总的来说,结果表明,LQT-TRAIL-NO@Nanogel可以有效地诱导癌细胞凋亡PDAC / PSC 3 d减少文化通过NO-mediated ECM模型和细胞凋亡的敏化作用。

改造的纤维化LQT-TRAIL-NO@Nanogel时间和抑制肿瘤生长

接下来,我们检查LQT-TRAIL-NO@Nanogel管理是否会减少多在小鼠肿瘤基质(AK4.4细胞和KPC001细胞)和人类(AsPC-1细胞)原位PDAC模型。29 30NPs装满小道和/或重组DNIC(小道:4毫克/公斤,DNIC: 2毫克/公斤每隔一天)静脉注射到小鼠轴承原位PDAC肿瘤肿瘤植入后第三天开始,和改变多时间进行评估马森的三色的和免疫荧光染色后2周的治疗(图7)。当交付使用肿瘤stroma-targeted Nanogel修改LQT28肽,小道的组合和没有(LQT-TRAIL-NO@Nanogel)和(LQT-NO@Nanogel)显著抑制肿瘤粘连形成,独自的我胶原蛋白表达减少和降低渗透α-SMA-positive myofibroblasts PDAC肿瘤,相比之下,观察治疗后,一道TRAIL-NO@Nanogel和未经处理的控制(图7罪犯,请参阅在线S9-S11补充数据)。TRAIL受体2 (DR5)表达式被发现调节活化的肝星状细胞,小径可能触发激活PSC细胞凋亡,从而减少ECM。31日因此,我们观察到治疗单独跟踪(LQT-TRAIL@Nanogel)适度缓解肿瘤粘连形成(图7罪犯,请参阅在线S9-S11补充数据)。

我们评估是否co-delivery没有导致原位PDAC增加抗癌活性跟踪模型。与治疗肿瘤stroma-targeted NPs装满小道或没有单独(LQT-TRAIL@Nanogel或LQT-NO@Nanogel)或一道TRAIL-NO@Nanogel,加工痕迹和不(LQT-TRAIL-NO@Nanogel)导致显著减少肿瘤体积和增加凋亡细胞的数量在所有AK4.4肿瘤,KPC001(鼠)和AsPC-1(人类)细胞PDAC模型(图7 b, E和F,请参阅在线S11补充数据和S12)。此外,小道,没有治疗的结合(LQT-TRAIL-NO@Nanogel)也显著增加总体生存原位鼠PDAC (AK4.4)模型与小道或没有单独(LQT-TRAIL@Nanogel或LQT-NO@Nanogel)或一道TRAIL-NO@Nanogel (图7 g)。

评估治疗安全,我们评估安全参数FVB / NJNarl老鼠。肿瘤stroma-targeted LQT-TRAIL-NO@Nanogel在动物实验安全,耐受性良好,没有肝酶水平变化(天冬氨酸氨基转移酶、丙氨酸转氨酶、碱性磷酸酶和γ-glutamyltransferase),肾功能指标(血尿素氮和肌酐)或血清高铁血红蛋白水平指出,这些值是与那些未经处理的小鼠(表2)。

表2

LQT-TRAIL-NO@Nanogel毒性评估

在这项研究中,我们表明,封装没有捐赠者DNIC成聚乙二醇PLGA-coated科幻nanogel和修改的nanogel肿瘤stroma-targeting肽增强的稳定性没有捐助,使不稳定的释放和促进目标没有交付PDAC的多间质肿瘤。这NO-producing stroma-targeted nanogel抑制PSC活化,减少ECM生产,增加肿瘤灌注和敏感PDAC小道。利用任何的治疗效果,可以编写多基质,实现细胞凋亡敏化作用在癌症细胞,这种组合therapy-co-delivery的小道,没有stroma-targeted nanogel-efficiently抑制肿瘤生长在小鼠和人类PDAC模型。因此,这stroma-targeted没有和小道co-delivery系统有巨大的潜力来改善的效果跟踪治疗和可能的其他化疗或靶向治疗在PDAC未来的临床应用。

讨论

肿瘤stroma-targeted运载系统已经开发通过修改myofibroblasts配体识别受体表达。尺码苗族使用anisamide,西格玛受体的配体在肿瘤细胞和战乱国家,共轭聚乙二醇基因载体成功交付基因转入原位PDAC肿瘤。35质膜丝氨酸蛋白酶成纤维细胞激活蛋白(FAP)在战乱国家另一个潜在的目标。航空公司修改的单链可变片段承认FAP被证明有效地交付化疗或抗毒素战乱国家,耗尽FAP-expressing基质细胞,从而改变时间达到抗癌效果。36 37尽管西格玛受体和FAP是高度表达对癌症细胞和成纤维细胞,分别这些受体也表达了其他正常细胞,如周和上皮细胞。克服这个问题的非特异性靶向,在这项研究中,我们发现小说肿瘤stroma-targeting肽在vitro-in体内筛选噬菌体库的第一轮在活的有机体内原位PDAC肿瘤筛查是在老鼠身上进行的轴承。后浓缩的噬菌体确PDAC肿瘤,我们进行了三轮在体外筛选在人类已经被捕获肽能够针对PDAC肿瘤和人类已经为未来的实验和临床应用。发现的肿瘤stroma-targeting肽噬菌体展示目标战乱国家也可能在其他类型的肿瘤的特点是特别加强粘连形成。

基质消耗的潜在限制治疗癌症侵犯和转移的可能性增加。8ECM成分胶原蛋白我充当一个双峰分子调节细胞分裂和细胞生长。38过于丰富的ECM可以作为抑制胰腺癌的进展和转移的障碍。39战乱国家也可能抑制胰腺癌的肿瘤生长调节抗癌免疫力。40无选择性的损耗的ECM或消除战乱国家PDAC被发现增加PDAC侵犯和转移能力。8在这项研究中,我们建立了肿瘤stroma-targeted NPs交付没有PDAC肿瘤间质,导致已经被激活和扶贫的重组肿瘤粘连形成。而不是促进转移报道其他基质消耗药剂,我们先前的研究显示,没有会抑制转移的交付通过抑制肿瘤细胞的迁移/入侵和epithelial-mesenchymal转移癌细胞。41需要更多的研究来研究转移抑制潜在的不作为有前途的PDAC辅助治疗。

总之,我们新开发的纳米级跟踪治疗包括以下有益元素:(i)肿瘤stroma-targeting肽,提高吸收的NPs PDAC基质;(2)一个科幻水凝胶等核心蛋白质装载货物跟踪,还允许pH-responsive释放的蛋白质货物;和(iii) DNIC-a合成没有捐赠者装载在壳组成的脂质和PLGA更改多见间质和促进细胞凋亡诱导PDAC小道。这种组合疗法,co-delivery的小道,没有stroma-targeted nanogel整编了纤维化的时间和抑制肿瘤的驱动器可能被翻译成一个安全的和有前途的治疗多PDAC等肿瘤类型。

方法和材料

额外的材料和方法包括在网上(见补充信息在线补充材料和方法)。

准备LQT-TRAIL-NO@Nanogel

科幻水解决方案准备如前所述。42TRAIL-DNIC@Nanogel准备通过油包水乳液。科幻的解决方案(1 wt %)第一次混合蛋白质。二羟基苯丙氨酸(74µL 35毫米)添加到油相的环己烷和igepal - 520 (7:3, v / v)。亲水阶段是一滴一滴地添加到油相。40分钟的乳剂被混合形成的凝聚核心科幻nanogel /跟踪。后,3毫升的100%乙醇(EtOH)添加到破坏乳状液,混合是离心机在20133克15分钟。移除上层清液的解决方案后,科幻nanogel /核心收集和清洗两次100% EtOH去除残留有机溶剂。科幻nanogel /小道核悬浮在氯仿、涡流和用。免费的脂质和DNIC (DOPC: DOTAP: DSPE-PEG2000: DSPE-PEG2000-MAL:胆固醇:DNIC: PLGA = 1:1:1:0.1:2:0.75:0.025摩尔比)添加到科幻nanogel /核心然后干下N2。蒸发后,氯仿,250µL水形成TRAIL-DNIC@Nanogel补充道。肽的修改是通过接合硫醇基的肽DSPE-PEG2000马来酰亚胺。的非结合的马来酰亚胺组被半胱氨酸,以避免非特异性结合。LQT-TRAIL-DNIC@Nanogel离心机在25 000年相对离心力(rcf) 20分钟25°C到收集NPs。

统计数据

统计分析使用GraphPad棱镜的v。学生的t或Mann-Whitney U测试被用于比较两组根据数据分布。单向方差分析之后,图基的事后测试被用于三个或更多组的比较。值是正态分布,方差是类似的对比组之间。P < 0.05被认为是具有统计学意义。

数据可用性声明

所有数据都包含在相关研究文章或作为补充信息上传。所有相关数据支持这项研究的重要发现和补充文件中可用的文章。

伦理语句

病人同意出版

伦理批准

我们进行免疫染色分析亲和力的噬菌体对人类胰腺肿瘤样本,获得审查和批准协议下的机构审查委员会台北荣民总医院(irb2017 - 01 - 016 c, 2021 - 07 - 041 bc)。

引用

补充材料

  • 补充数据

    仅这个web文件已经由英国医学杂志出版集团从一个电子文件提供的作者(年代)和没有对内容进行编辑。

脚注

  • H-CH, Y-CS C-PL同样起到了推波助澜的作用。

  • 贡献者H-CH Y-CSu构思和设计实验和分析数据;C-PL、P-HC Y-TT、B-WL F-FH, Y-TC, Y-HL, HTH Y-CSh进行实验;DW, H-TC、C-CH I-JL H-CW造成材料和分析工具;T-TL JW监督实验;YC是这项研究的主要研究者负责研究和设计概念。批准的最终版本的手稿:所有作者。

  • 资金本研究由科技部支持(108 - 2221 - e - 007 - 104 - my5, 110 - 2628 - e - 007 - 007),国立清华大学,台湾(q2705e1 q2709e1批准号110,110,110 q2711e1),美国国家卫生研究院(nhri - ex110 - 11015 - bi)和对基础和应用科学的前沿研究中心重要的特色地区的高等教育研究中心计划的框架内发芽项目由教育部下发110 qr001i5)和科技部(大多数110 - 2634 f - 007 - 023)。

  • 相互竞争的利益没有宣布。

  • 出处和同行评议不是委托;外部同行评议。

  • 补充材料此内容已由作者(年代)。尚未审查由BMJ出版集团有限公司(BMJ)和可能没有被同行评议。任何意见或建议讨论仅代表作者(年代)和不了BMJ的支持。和责任起源于BMJ概不负责任何依赖的内容。内容包括任何翻译材料,BMJ并不保证翻译的准确性和可靠性(包括但不限于当地法规、临床指南,术语,药物名称和药物剂量),和不负责任何错误或遗漏引起的翻译和改编或否则。